A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Engineering thermostability of industrial enzymes for enhanced application performance. | LitMetric

Engineering thermostability of industrial enzymes for enhanced application performance.

Int J Biol Macromol

Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China. Electronic address: 8

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Thermostability is a key factor for the industrial application of enzymes. This review categorizes enzymes by their applications and discusses the importance of engineering thermostability for practical use. It summarizes fundamental theories and recent advancements in enzyme thermostability modification, including directed evolution, semi-rational design, and rational design. Directed evolution uses high-throughput screening to generate random mutations, while semi-rational design combines hotspot identification with screening. Rational design focuses on key residues to enhance stability by improving rigidity, foldability, and reducing aggregation. The review also covers rational strategies like engineering folding energy, surface charge, machine learning methods, and consensus design, along with tools that support these approaches. Practical examples are critically assessed to highlight the benefits and limitations of these strategies. Finally, the challenges and potential contributions of artificial intelligence in enzyme thermostability engineering are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.139067DOI Listing

Publication Analysis

Top Keywords

engineering thermostability
8
enzyme thermostability
8
directed evolution
8
semi-rational design
8
rational design
8
design
5
engineering
4
thermostability industrial
4
industrial enzymes
4
enzymes enhanced
4

Similar Publications