Single-cell analysis of bidirectional reprogramming between early embryonic states identify mechanisms of differential lineage plasticities in mice.

Dev Cell

Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA. Electronic address:

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Two distinct lineages, pluripotent epiblast (EPI) and primitive (extra-embryonic) endoderm (PrE), arise from common inner cell mass (ICM) progenitors in mammalian embryos. To study how these sister identities are forged, we leveraged mouse embryonic stem (ES) cells and extra-embryonic endoderm (XEN) stem cells-in vitro counterparts of the EPI and PrE. Bidirectional reprogramming between ES and XEN coupled with single-cell RNA and ATAC-seq analyses showed distinct rates, efficiencies, and trajectories of state conversions, identifying drivers and roadblocks of reciprocal conversions. While GATA4-mediated ES-to-iXEN conversion was rapid and nearly deterministic, OCT4-, KLF4-, and SOX2-induced XEN-to-induced pluripotent stem (iPS) reprogramming progressed with diminished efficiency and kinetics. A dominant PrE transcriptional program, safeguarded by GATA4, alongside elevated chromatin accessibility and reduced DNA methylation of the EPI underscored the differential plasticities of the two states. Mapping in vitro to embryo trajectories tracked reprogramming cells in either direction along EPI and PrE in vivo states, without transitioning through the ICM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11998022PMC
http://dx.doi.org/10.1016/j.devcel.2024.11.022DOI Listing

Publication Analysis

Top Keywords

bidirectional reprogramming
8
extra-embryonic endoderm
8
epi pre
8
single-cell analysis
4
analysis bidirectional
4
reprogramming
4
reprogramming early
4
early embryonic
4
embryonic states
4
states identify
4

Similar Publications

The retina is highly sensitive to oxygen and blood supply, and hypoxia plays a key role in retinal diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). Müller glial cells, which are essential for retinal homeostasis, respond to injury and hypoxia with reactive gliosis, characterized by the upregulation of the glial fibrillary acidic protein (GFAP) and vimentin, cellular hypertrophy, and extracellular matrix changes, which can impair retinal function and repair. The retinal pigment epithelium (RPE) supports photoreceptors, forms part of the blood-retinal barrier, and protects against oxidative stress; its dysfunction contributes to retinal degenerative diseases such as AMD, retinitis pigmentosa (RP), and Stargardt disease (SD).

View Article and Find Full Text PDF

Tumor-associated macrophages (TAMs) are prominent constituents of solid tumors, and their prevalence is often associated with poor clinical outcomes. These highly adaptable immune cells undergo dynamic functional changes within the immunosuppressive tumor microenvironment (TME), engaging in reciprocal interactions with malignant cells. This bidirectional communication facilitates concurrent phenotypic transformation: tumor cells shift toward invasive mesenchymal states, whereas TAMs develop immunosuppressive, pro-tumorigenic traits.

View Article and Find Full Text PDF

Cancer Cell-Secreted miR-33a Reduces Stress Granule Formation by Targeting Polyamine Metabolism in Stroma to Promote Tumourigenesis.

J Extracell Vesicles

September 2025

State Key Laboratory of Metabolism and Regulation in Complex Organisms, Hubei Provincial Research Center for Basic Biological Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA Institute, Wuhan University, Wuhan, China.

Tumour progression depends on the bidirectional interactions between cancer and stroma in the heterogeneous tumour microenvironment (TME) partially through extracellular vesicles (EVs). However, the secretary mechanism and biological effect of cancer cell derived EVs on tumour survival under starvation is poorly defined. Here, we identify cancer cells selectively secrete miR-33a with the assistance of aconitase 1 (ACO1), an iron-responsive RNA binding protein, under glucose starvation and lower iron level, which affiliates the binding capability of miR-33a and ACO1.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) represents a significant global health challenge. Gut microbiota imbalance and abnormal chromatin modifications play critical roles in the progression of CRC. However, the mechanisms by which they exert their influences, particularly the involvement of ()-mediated post-translational modifications (PTMs), remain inadequately understood.

View Article and Find Full Text PDF

Viral particles and proteins released during infection profoundly reshape the cellular microenvironment by disrupting host signaling, triggering inflammation, and modulating immune responses. Glucose metabolism, a critical hub for energy production and biosynthesis, is highly susceptible to viral reprogramming. This review summarizes recent findings showing that diverse viruses, including influenza virus, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and enteroviruses, manipulate glucose metabolic pathways to promote replication and evade immune surveillance.

View Article and Find Full Text PDF