Advanced Carbon Nanostructures: Synthesis, Properties, and Applications II.

Nanomaterials (Basel)

Centre for Advanced Material Application (CEMEA), Slovak Academy of Sciences, Dúbravská Cesta 5807/9, 845 11 Bratislava, Slovakia.

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Single-walled carbon nanotubes [...].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11676303PMC
http://dx.doi.org/10.3390/nano14242026DOI Listing

Publication Analysis

Top Keywords

advanced carbon
4
carbon nanostructures
4
nanostructures synthesis
4
synthesis properties
4
properties applications
4
applications single-walled
4
single-walled carbon
4
carbon nanotubes
4
advanced
1
nanostructures
1

Similar Publications

Recent advances in presodiation strategies for hard carbon anodes in sodium-ion batteries.

Chem Commun (Camb)

September 2025

Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China.

Hard carbon (HC) has emerged as a promising anode material for sodium-ion batteries (SIBs) owing to its low cost, abundant renewable resources, and high specific capacity. However, its practical application is significantly hindered by the severe initial irreversible capacity loss resulting from sodium consumption during the first cycle. To address this issue, a variety of presodiation strategies have been developed to compensate for the sodium loss and improve the initial coulombic efficiency.

View Article and Find Full Text PDF

Photo-decarbonylation of aldehydes by -W(N)(dppe) at room temperature.

Org Biomol Chem

September 2025

Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Despite great advances in decarbonylation of aldehydes using noble metals, the reaction is largely limited to high reaction temperatures and displays poor functional group tolerance. Herein, we report photo-irradiated decarbonylation of aldehydes, promoted by -W(N)(dppe), at room temperature. A wide range of substrates with diverse functional groups underwent decarbonylation efficiently to give the corresponding arene and alkane products in moderate to high yields.

View Article and Find Full Text PDF

Optimal cerium microalloying enhances SASS/Q235 weld corrosion and antibacterial performance.

iScience

September 2025

State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.

Super austenitic stainless steels (SASS) face challenges like galvanic corrosion and antibacterial performance when welded to carbon steel (Q235) in marine environments. This study demonstrates that adding 1.0 wt% cerium (Ce) to SASS refines the heat-affected zone (HAZ) grain structure (from 7 μm to 2 μm), suppresses detrimental σ-phase precipitation, and forms a dense oxide film.

View Article and Find Full Text PDF

The study of electrochemical oxidations has wide-ranging implications, from the development of new electrocatalysts for fuel cells for energy conversion, to the synthesis of fine chemicals. 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO) has been used for decades as a sustainable, metal-free mediator for chemical oxidations and is now being used for electrochemical oxidations. We describe here a novel approach to TEMPO-mediated electrooxidations, in which the chemical input and waste generated during electrooxidations of alcohols are minimized by using a multifunctional room temperature ionic liquid (RTIL) to facilitate flow electrosynthesis.

View Article and Find Full Text PDF

Catalytic asymmetric reactions of isocyanides for constructing non-central chirality.

Beilstein J Org Chem

August 2025

College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.

Beyond the conventional carbon-centered chirality, catalytic asymmetric transformations of isocyanides have recently emerged as a powerful strategy for the efficient synthesis of structurally diverse scaffolds featuring axial, planar, helical, and inherent chirality. Herein, we summarize the exciting achievements in this rapidly evolving field. These elegant examples have been organized and presented based on the reaction type as well as the resulting chirality form.

View Article and Find Full Text PDF