Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Short-chain enoyl-CoA hydratase 1 deficiency (ECHS1D) is a rare genetic disorder caused by biallelic pathogenic variants in the ECHS1 gene. ECHS1D is characterised by severe neurological and physical impairment that often leads to childhood mortality. Therapies such as protein and single nutrient-restricted diets show poor efficacy, whereas the development of new treatments is hindered by the low prevalence of the disorder and a lack of model systems for treatment testing. Here, we report on the establishment of a Drosophila model of ECHS1D. Flies carrying mutations in Echs1 (CG6543) were characterised for their physical and metabolic phenotypes, and dietary intervention to improve fly model health was explored. The Echs1 null larvae recapitulated human ECHS1D phenotypes including poor motor behaviour and early mortality and could be rescued by the expression of a human ECHS1 transgene. We observed that both restriction of valine in isolation, or all branched-chain amino acids (BCAAs-leucine, isoleucine and valine) together, extended larval survival, supporting the idea that reducing BCAA pathway catabolic flux is beneficial in this disorder. Further, metabolic profiling revealed substantial changes to carbohydrate metabolism, suggesting that Echs1 loss causes widespread metabolic dysregulation beyond valine metabolism. The similarities between Drosophila and human ECHS1D suggest that the fly model is a valuable animal system in which to explore mechanisms of pathogenesis and novel treatment options for this disorder.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jimd.12840DOI Listing

Publication Analysis

Top Keywords

drosophila model
8
short-chain enoyl-coa
8
enoyl-coa hydratase
8
fly model
8
human echs1d
8
echs1
6
model
5
echs1d
5
valine
4
valine restriction
4

Similar Publications

Precise measurement of motor neuron dysfunction in Drosophila ALS model via climbing assay and leg imaging.

Methods Cell Biol

September 2025

The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, P.R. China; Medical and Health Research Institute, Zhengzhou Research Institute of HIT, Zhengzhou, HA, P.R. China. Electronic address:

Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disorder characterized by progressive degeneration of motor neurons, leading to muscle weakness, paralysis, and death. While there is a plethora of studies focusing on many aspects of ALS, the pathogenesis of this disease is not well understood, and effective treatments are scarce. Drosophila melanogaster is a powerful model organism for studying ALS due to its genetic tractability and its evolutionarily conserved cellular and molecular processes which are also shared between the fly and human.

View Article and Find Full Text PDF

Epithelia are specialized and selective tissue barriers that separate the organism's interior from the external environment. Among adult tissues, the gut epithelium must withstand microbial and biochemical insults but also mechanical stresses imposed by luminal contents and gastrointestinal motility. In addition, the continuous renewal of the intestinal epithelium creates tension that must be withstood by cell-cell junctions and the actomyosin cytoskeleton to preserve barrier integrity.

View Article and Find Full Text PDF

Immune cells are increasingly recognized as nutrient sensors; however, their developmental role in regulating growth under homeostasis or dietary stress remains elusive. Here, we show that Drosophila larval macrophages, in response to excessive dietary sugar (HSD), reprogram their metabolic state by activating glycolysis, thereby enhancing TCA-cycle flux, and increasing lipogenesis-while concurrently maintaining a lipolytic state. Although this immune-metabolic configuration correlates with growth retardation under HSD, our genetic analyses reveal that enhanced lipogenesis supports growth, whereas glycolysis and lipolysis are growth-inhibitory.

View Article and Find Full Text PDF

Sickness-induced sleep is a behavior conserved across species that promotes recovery from illness, yet the underlying mechanisms are poorly understood. Here, we show that interleukin-6-like cytokine signaling from the gut to brain glial cells regulates sleep. Under healthy conditions, this pathway promotes wakefulness.

View Article and Find Full Text PDF

Moss BRCA2 lacking the canonical DNA-binding domain promotes homologous recombination and binds to DNA.

Nucleic Acids Res

September 2025

Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France.

BRCA2 is crucial for mediating homology-directed DNA repair (HDR) through its binding to single-stranded DNA (ssDNA) and the recombinases RAD51 and DMC1. Most BRCA2 orthologs have a canonical DNA-binding domain (DBD) with the exception of Drosophila melanogaster. It remains unclear whether such a noncanonical BRCA2 variant without DBD possesses a DNA-binding activity.

View Article and Find Full Text PDF