98%
921
2 minutes
20
Both rhizospheric soil microbes and shoot litter input can have profound effects on plant performance; however, their interactive effects on plants in Cd-contaminated soils remain poorly understood. We grew an invasive hyperaccumulator, , in sterilized and unsterilized rhizosphere soil without litter or with a low (0.2%, dry weight ratio) or a high amount (1%) of litter from in soil with low (5 mg kg) or high (10 mg kg) concentrations of Cd. The total, shoot, and root biomass of increased significantly with litter addition, by an average of 27%, 28%, and 20%, respectively. The biomass of was significantly lower in unsterilized rhizosphere soil than in sterilized rhizosphere soil, decreasing by 19% for total, 18% for shoot, and 24% for root, respectively. Furthermore, the effects of different litter amounts (0.2% vs. 1%) on biomass did not vary in sterilized rhizosphere soils but significantly varied in unsterilized rhizosphere soils, showing that the biomass was significantly lower with 1% litter addition than with 0.2% litter addition in unsterilized rhizosphere soils, decreasing by 28% for total, 29% for shoot, and 21% for root, respectively. Tissue Cd concentrations were significantly higher in highly Cd-contaminated soils (+75% for shoot and +51% for root) than in low Cd-contaminated soils; however, higher tissue Cd concentrations did not cause a significant decrease in the biomass of . Soil fungal communities, particularly the dominant phyla, Ascomycota and Basidiomycota, play crucial roles in modulating the effects of rhizosphere soil microbes and litter on the growth of . Our results suggest that rhizosphere soil microbes and litter interact and affect the growth of : litter addition promoted growth by increasing the abundance of saprotrophs (especially Basidiomycota) and decreasing Cd accumulation in plant tissues, and rhizosphere soil inhibition was associated with a decreased abundance of Basidiomycota. Our findings highlight the importance of the interactive effects of rhizospheric soil microbes and litter on plant growth in Cd-contaminated soils.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670255 | PMC |
http://dx.doi.org/10.3389/fpls.2024.1507089 | DOI Listing |
Front Microbiol
August 2025
College of Plant Protection, Southwest University, Chongqing, China.
Root-knot nematodes (RKNs), particularly , are one of the most destructive plant-parasitic nematodes (PPNs) affecting crop production worldwide. Previous earlier study revealed that calcinated oyster shell powder (OSP) possessed excellent suppression of tobacco RKN disease. However, the suppression mechanism of OSP against RKNs still remains unrevealed.
View Article and Find Full Text PDFEnviron Microbiol Rep
October 2025
Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador.
Plant roots are colonised by diverse communities of microorganisms that can affect plant growth and enhance plant resistance to (a) biotic stresses. We investigated the role of the indigenous soil microbiome in the resistance of tomato to the invasive sap-sucking insect Prodiplosis longifila (Diptera: Cecidomyiidae). Native and agricultural soils were sampled from the Andes in Southern Ecuador and tested, in greenhouse bioassays, for leaf tissue damage caused by P.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
September 2025
Department of Microbiology, University of Georgia, Athens, GA, 30602, USA.
While PGPB have historically been applied in agriculture, their formal recognition in the last century has driven intensive research into their role as sustainable tools for improving crop yield and stress tolerance. As they are primarily sourced from wild or native environments, the widespread enthusiasm has led to heightened expectations surrounding their potential, often based on the assumption that biological solutions are inherently safer and more effective than synthetic inputs. However, despite their popularity, increasing reports of inconsistent or limited performance under real-world, field conditions have raised critical questions about their credibility as biofertilizers and biocontrol agents.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
Rapidly expanding nascent ecosystems at glacier forefields under climate warming dramatically enhance the terrestrial carbon (C) sink. Microbial C fixation and degradation, closely implicated in nitrogen (N) transformation and plant-soil-microbe interactions, significantly regulate soil C accumulation. However, how shifts in microbial functional potential impact soil C sequestration during vegetation succession remains unclear.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Iron plaque (IP) on rice root surfaces has been extensively documented as a natural barrier that effectively reduces contaminant bioavailability and accumulation. However, its regulatory mechanisms in rhizospheric methane oxidation and biological nitrogen fixation (BNF) remain elusive. This study reveals a previously unrecognized function of IP: mediating methanotrophic nitrogen fixation through coupled aerobic methane oxidation and IP reduction (Fe-MOX).
View Article and Find Full Text PDF