Integrated Transcriptome Analysis Reveals Molecular Subtypes and ceRNA Networks in Multiple Sclerosis.

Degener Neurol Neuromuscul Dis

Department of Clinical Laboratory, Jingjiang People's Hospital Affiliated to Yangzhou University, Taizhou, Jiangsu, 214504, People's Republic of China.

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aim: Multiple sclerosis (MS) is a chronic autoimmune disease affecting the central nervous system (CNS). While extensively studied, its molecular subtypes and mechanisms remain poorly understood, hindering the identification of effective therapeutic targets.

Methods: We used ConsensusClusterPlus to analyze transcriptome data from 215 MS patient samples, identifying distinct molecular subtypes. Differential expression analysis and variability assessments were conducted to further characterize these subtypes. Additionally, circular RNAs (circRNAs) and microRNAs (miRNAs) were screened for potential ceRNA interactions.

Results: Three molecular subtypes were identified: MS- (C1), MS- (C2), and MS- (C3). Each subtype was involved in key MS-related pathways (as annotated by KEGG), but the core genes regulating these pathways differed significantly among the subtypes. Subtype C3 exhibited neurodegenerative pathway enrichment, increased immune activity, and immune cell infiltration, suggesting a more severe disease course. Further analysis revealed 18 differentially expressed circRNAs and 22 miRNAs, with and as hub targets in C3.

Discussion: Differential activation of immune pathways across MS subtypes suggests specific gene expression drives disease heterogeneity. We propose a circ_0045537/miR-196a-5p/ axis in subtype C3, modulating microtubule dynamics and worsening MS severity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11669277PMC
http://dx.doi.org/10.2147/DNND.S491211DOI Listing

Publication Analysis

Top Keywords

molecular subtypes
16
multiple sclerosis
8
ms- ms-
8
subtypes
7
integrated transcriptome
4
transcriptome analysis
4
analysis reveals
4
molecular
4
reveals molecular
4
subtypes cerna
4

Similar Publications

Background: Sarcomas are rare cancer with a heterogeneous group of tumors. They affect both genders across all age groups and present significant heterogeneity, with more than 70 histological subtypes. Despite tailored treatments, the high metastatic potential of sarcomas remains a major factor in poor patient survival, as metastasis is often the leading cause of death.

View Article and Find Full Text PDF

Strategic Design of Aptamer-Guided Aggregation-Induced Emission Nanoparticles for Targeted Photodynamic Therapy in Breast Cancer.

Adv Sci (Weinh)

September 2025

Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Hong Kong, 999077,

Breast cancer (BC), characterized by its heterogeneity and diverse subtypes, necessitates personalized treatment strategies. This study presents MF3Ec-TBPP nanoparticles (NPs) as a promising approach, integrating an aggregation-induced emission (AIE)-based photosensitizer, TBPP, with the MF3Ec aptamer to enhance targeted photodynamic therapy (PDT) for Luminal A subtype BC cells. The nanoparticles also feature a 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol) shell and dipalmitoyl phosphatidylcholine (DPPC), which stabilize the structure and inhibit singlet oxygen generation, effectively reducing off-target effects and protecting healthy tissues.

View Article and Find Full Text PDF

Cancer, with its inherent heterogeneity, is commonly categorized into distinct subtypes based on unique traits, cellular origins, and molecular markers specific to each type. However, current studies primarily rely on complete multi-omics datasets for predicting cancer subtypes, often overlooking predictive performance in cases where some omics data may be missing and neglecting implicit relationships across multiple layers of omics data integration. This paper introduces Multi-Layer Matrix Factorization (MLMF), a novel approach for cancer subtyping that employs multi-omics data clustering.

View Article and Find Full Text PDF

[New insights from basic research on testicular germ cell tumors and updated tumorigenesis].

Urologie

September 2025

Klinik für Urologie, Medizinisches Forschungszentrum, Urologisches Forschungslabor, Translationale UroOnkologie, Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Deutschland.

Type II testicular germ cell tumors (GCT) are the most common malignant disease in young men, with a steadily increasing incidence. They originate from germ cell neoplasia in situ and are classified into seminomas (SE) and nonseminomas (NS). The NS subtype embryonal carcinoma (EC) exhibits stem cell-like characteristics and, thus, has the potential to differentiate into teratomas (TE) or extraembryonic tissues, such as yolk-sac tumors (YST) and choriocarcinomas (CC).

View Article and Find Full Text PDF

Ferric Reductase is a Key Factor in Regulating Iron Absorption by Blastocystis sp.

Acta Parasitol

September 2025

Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.

Purpose: This study aimed to identify and analyze the role of Ferric reductase inBlastocystis sp. subtype 2 (ST2) and explore the relationship between the parasite and iron metabolism.

Methods: The location of Ferric reductase in Blastocystis sp.

View Article and Find Full Text PDF