98%
921
2 minutes
20
The application of flexible risers has led to increased production of fluid contents in the marine industry. This paper presents the design challenges of a flexible riser subjected to internal pressure under deep-water conditions, at a water depth of 2000 m. Parametric variations with extensive dynamic analysis were carried out. The study highlights include the global analysis of lazy-wave configuration for the design of flexible risers, to understand the failure of flexible risers and application of hybrid configurations on flexible pipes. For the global analysis, the design of the riser was modelled in OrcaFlex by considering different sections and then analysed for the influence of effective tension, bending moment and environmental conditions. This riser model is multi-layered and was mainly subjected to the fluid pressure load and the environmental load. Model validations were performed with existing lazy-wave models. In the global design, the riser was assessed when connected to the vessel, but vessel motion was not included, additionally, three different environmental conditions were applied on the model. Also, the suitability of the adopted configuration for the proposed flexible riser was adopted considering it as a sustainable marine structure. Stress profile, tension profile and bending moment for the risers were presented and conclusions were made on the study. Some fatigue study is recommended in future study to be undertaken on the riser.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11666038 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0310360 | PLOS |
PLoS One
December 2024
Offshore Oil Engineering Co., Ltd., Engineering Company, Tianjin, China.
The application of flexible risers has led to increased production of fluid contents in the marine industry. This paper presents the design challenges of a flexible riser subjected to internal pressure under deep-water conditions, at a water depth of 2000 m. Parametric variations with extensive dynamic analysis were carried out.
View Article and Find Full Text PDFMaterials (Basel)
June 2024
School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore.
The application of carbon fiber-reinforced composite materials in marine engineering is growing steadily. The mechanical properties of unbonded flexible risers using composite tensile armor wire are highly valued. However, the curing process generates a certain amount of internal residual stress.
View Article and Find Full Text PDFMaterials (Basel)
May 2024
School of Mechanical and Electric Engineering, Soochow University, Suzhou 215131, China.
Unbonded flexible risers consist of several helical and cylindrical layers, which can undergo large bending deformation and can be installed in different configurations to adapt to harsh marine environments; thus, they can be applied to transport oil and gas resources from ultra-deep waters (UDW). Due to their special geometric characteristics, they can ensure sufficient axial tensile stiffness while having small bending stiffness, which can undergo large deflection bending deformation. In recent years, the development of unbonded flexible risers has been moving in an intelligent, integrated direction.
View Article and Find Full Text PDFMaterials (Basel)
May 2024
School of Mechanical and Electric Engineering, Soochow University, Suzhou 215131, China.
Unbonded flexible risers consist of several helical and cylindrical layers, which can undergo large bending deformation and can be installed to different configurations to adapt to harsh marine environments, and is a key equipment in transporting oil and gas resources from Ultra Deep Waters (UDWs) to offshore platforms. The helical interlayer of an unbonded flexible riser makes the structural behavior difficult to predict. In this paper, the axial tensile behavior and the axial tensile ultimate strength of an unbonded flexible riser are studied based on a typical 2.
View Article and Find Full Text PDFIEEE Trans Cybern
September 2024
For the flexible riser systems modeled with partial differential equations (PDEs), this article explores the boundary control problem in depth for the first time using a dynamic event-triggered mechanism (DETM). Given the intrinsic time-space coupling characteristic inherent in PDE computations, implementing a state-dependent DETM for PDE-based flexible risers presents a significant challenge. To overcome this difficulty, a novel dynamic event-triggered control method is introduced for flexible riser systems, focusing on optimizing available control inputs.
View Article and Find Full Text PDF