Association between microplastics and the functionalities of human gut microbiome.

Ecotoxicol Environ Saf

Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China. Electronic address:

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

As an integral part of humans, the gut microbiome plays a significant role in the physiological and pathological processes of the host, and dysbiosis of the gut microbiome is linked to various diseases. The impact of microplastics on the diversity and composition of human gut microbiome has been reported previously. However, effects of microplastics on the functionality of the gut microbiome in humans have not been well studied. In the present study, concentrations of microplastics in human blood were detected through pyrolysis-gas chromatography/mass spectrometry in 39 adults. Five types of microplastics were found in human blood, including polyvinyl chloride, polyethylene, polypropylene, polystyrene, and polyamide 66. Shotgun metagenomic sequencing was further employed to analyze the metagenomes of the human stool samples and fecal samples from mice exposed to microplastics. Associations were found between microplastics and microbial species, as well as microbial genes encoding invasion-related virulence factors, quorum sensing, autoinducer and transporter system, and microplastic biodegradation enzymes. The findings are of significance to improve the understanding of functional changes in the gut microbiome associated with microplastic exposure, as well as raising awareness regarding the health risks of microplastics in the human population.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2024.117497DOI Listing

Publication Analysis

Top Keywords

gut microbiome
24
microplastics human
12
human gut
8
human blood
8
microplastics
7
human
6
gut
6
microbiome
6
association microplastics
4
microplastics functionalities
4

Similar Publications

Background: Alzheimer's disease (AD) patients and animal models exhibit an altered gut microbiome that is associated with pathological changes in the brain. Intestinal miRNA enters bacteria and regulates bacterial metabolism and proliferation. This study aimed to investigate whether the manipulation of miRNA could alter the gut microbiome and AD pathologies.

View Article and Find Full Text PDF

This study investigated the impact of dietary zeolite supplementation on growth, cecal microbiota and digesta viscosity, digestive enzymes, carcass traits, blood constituents, and antioxidant parameters of broilers. A completely randomized design was used with 240 one-day-old broiler chicks randomly assigned to three dietary treatments (0%, 1.5%, and 3% zeolite as a feed additive) with four replicates of 20 chicks each.

View Article and Find Full Text PDF

Insulin resistance is a heritable risk factor for many chronic diseases; however, the genetic drivers remain elusive. In seeking these, we performed genetic mapping of insulin sensitivity in 670 chow-fed Diversity Outbred in Australia (DOz) mice and identified a genome-wide significant locus (QTL) on chromosome 8 encompassing 17 defensin genes. By taking a systems genetics approach, we identified alpha-defensin 26 (Defa26) as the causal gene in this region.

View Article and Find Full Text PDF

Although dynamical systems models are a powerful tool for analysing microbial ecosystems, challenges in learning these models from complex microbiome datasets and interpreting their outputs limit use. We introduce the Microbial Dynamical Systems Inference Engine 2 (MDSINE2), a Bayesian method that learns compact and interpretable ecosystems-scale dynamical systems models from microbiome timeseries data. Microbial dynamics are modelled as stochastic processes driven by interaction modules, or groups of microbes with similar interaction structure and responses to perturbations, and additionally, noise characteristics of data are modelled.

View Article and Find Full Text PDF

The multi-kingdom cancer microbiome.

Nat Microbiol

September 2025

Joan and Sanford I. Weill Department of Medicine, Gastroenterology and Hepatology Division, Weill Cornell Medicine, New York, NY, USA.

Microbial influence on cancer development and therapeutic response is a growing area of cancer research. Although it is known that microorganisms can colonize certain tissues and contribute to tumour initiation, the use of deep sequencing technologies and computational pipelines has led to reports of multi-kingdom microbial communities in a growing list of cancer types. This has prompted discussions on the role and scope of microbial presence in cancer, while raising the possibility of microbiome-based diagnostic, prognostic and therapeutic tools.

View Article and Find Full Text PDF