98%
921
2 minutes
20
The coordinated movement of cell collectives is essential for normal epithelial tissue development, maintenance, and cancer progression. Here, we report on a minimal 3D extracellular matrix (ECM) system wherein both invasive collective migration (ICM) and rotational collective migration (RCM) arise spontaneously from individually seeded epithelial cells of mammary and hepatic origin, regardless of whether they express adherens junctions, and lead to ductal-like and acinar-like structures, respectively. Quantitative microscopy and cellular Potts modeling reveal that initial differences in cell protrusion dynamics and matrix-remodeling localization generate RCM and ICM behavior in confining 3D ECM. Matrix-remodeling activity by matrix metalloproteinases (MMPs) is localized to the base of protrusions in cells that initiate ICM, whereas RCM does not require MMPs and is associated with ITGβ1-mediated remodeling localized globally around the cell body. Further analysis in vitro and in vivo supports the concept that distinct matrix-remodeling strategies encode collective migration behaviors and tissue structure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945606 | PMC |
http://dx.doi.org/10.1016/j.devcel.2024.11.021 | DOI Listing |
Newton
September 2025
Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.
In confluent cell monolayers, patterns of cell forces and motion are systematically altered near topological defects in cell shape. In turn, defects have been proposed to alter cell density, extrusion, and invasion, but it remains unclear how the defects form and how they affect cell forces and motion. Here, we studied +1/2 defects, and, in contrast to prior studies, we observed the concurrent occurrence of both tail-to-head and head-to-tail defect motion in the same cell monolayer.
View Article and Find Full Text PDFAdv Mater
September 2025
NRC (Nanostructure Research Centre), Wuhan University of Technology, Wuhan, 430070, China.
Thermoelectric nanoplates derived from anisotropic van der Waals (vdW) materials such as BiTe are pivotal for flexible electronics and microscale thermal management. Their performance critically depends on grain boundary (GB) microstructure, but the atomic-scale mechanisms governing grain growth in these highly anisotropic systems remain elusive. This particularly concerns the competition between individual nanoplate reshaping driven by facet stabilization and collective merging at GBs.
View Article and Find Full Text PDFBiosystems
September 2025
Department of Physics, Lancaster University, Lancaster LA1 4YB, UK. Electronic address:
Swirling motion is an essential phenomenon that significantly influences numerous biological processes, such as the mixing of molecular components within living cells, nutrient transport, the structural changes of the cytoskeletons of contractile cells and the rearrangement of multicellular systems caused by collective cell migration. The dynamical relationship between subcellular and supracellular rearrangements enhances cell migration and contributes to tissue homeostasis. However, the basic mechanisms that drive swirling motion in biological contexts remain a matter of ongoing inquiry.
View Article and Find Full Text PDFOpen Res Eur
August 2025
Department of Studies on Languages and Culture, University of Modena and Reggio Emilia, Modena, Emilia Romagna, 41121, Italy.
Qualitative-archival research is not just "preservation": it shows the potential of providing dynamic and interlinked information, including legal frameworks, policy documents, historical context, and original narratives, capable of supporting policies in the long term. Besides this, it is a potential tool to foster the agency of migrants. Morover, qualitative-archival research can be a powerful tool for social innovation, as conducting qualitative research, based on individual and collective narratives, is a necessary basis to non-emergency policies and to social work planning and evaluation.
View Article and Find Full Text PDFAdv Mater
September 2025
Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri i Reixac, 10-12, Barcelona, 08028, Spain.
Active matter, encompassing both natural and artificial systems, utilizes environmental energy to sustain autonomous motion, exhibiting unique non-equilibrium behaviors. Artificial active matter (AAM), such as nano/micromotors, holds transformative potential in precision medicine by enhancing drug delivery and enabling targeted therapeutic interventions. Under the demand for increasing intelligence in AAM, controlling their non-equilibrium processes within complex in vivo environments presents significant challenges.
View Article and Find Full Text PDF