Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: MicroRNAs (miRNAs) have emerged as an essential regulator of the cell fate commitment of neural stem/progenitor cells (NPCs), although the impacts of certain miRNAs on NPCs remain vague. The aim of this study is to investigate the regulatory effects of on the cell fate commitment of NPCs.

Methods: We investigated the impact of on the proliferation and differentiation capacities of primary NPCs by manipulating the expression of using specific mimics and inhibitors. The effects of on NPCs was confirmed through stereotactic injection of antagonists to the brains of mice at postnatal day 1 (P1).

Results: The expression levels of kept increasing in the differentiation process of NPCs and . Perturbation of 's function showed that inhibited NPCs' proliferation and promoted embryonic NPCs to differentiate more favorably to the glial lineage. We then validated the anti-proliferation and pro-glial roles of using NPCs isolated from P1 mouse brains. study further showed enlarged NPCs pools and inhibited gliogenesis in the brains of P1 mice after animals received antagomir-185-5p.

Conclusion: Our study suggests as an important regulator for the proliferation and glial fate commitment of NPCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656079PMC
http://dx.doi.org/10.3389/fcell.2024.1510746DOI Listing

Publication Analysis

Top Keywords

fate commitment
12
npcs
9
proliferation differentiation
8
neural stem/progenitor
8
stem/progenitor cells
8
cell fate
8
brains mice
8
regulates proliferation
4
differentiation neural
4
cells background
4

Similar Publications

Therapeutic T-cell engineering from human hematopoietic stem cells (HSCs) focuses on recapitulating notch1-signaling and α4β1-integrin-mediated adhesion within the thymic niche with supportive stromal cell feeder-layers or surface-immobilized recombinant protein-based engineered thymic niches (ETNs). The relevant Notch1-DLL-4 and α4β1-integrin-VCAM-1 interactions are known to respond to mechanical forces that regulate their bond dissociation behaviors and downstream signal transduction, yet manipulating the mechanosensitive features of these key receptor-ligand interactions in thymopoiesis has been largely ignored in current ETN designs. Here, we demonstrate that human T-cell development from cord blood-derived CD34 HSCs is regulated via molecular cooperativity in notch1 and integrin-mediated mechanotransduction.

View Article and Find Full Text PDF

Epigenetic mechanisms and next-gen editing platforms in hematology: From molecular basis to therapeutic frontiers.

Crit Rev Oncol Hematol

September 2025

Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.. Electronic address:

Epigenetic regulation is fundamental to hematopoiesis, influencing stem cell fate, lineage commitment, and the development of hematologic diseases. Recent technological innovations have transitioned from traditional genetic editing towards programmable, reversible epigenetic modulation without altering the DNA sequence. This review explores the evolution of epigenetic editing platforms, from zinc finger proteins and TALEs to the transformative CRISPR-dCas9 system, and introduces next-generation technologies leveraging dCas12, dCas13, and modular RNA-guided systems.

View Article and Find Full Text PDF

Super-enhancers (SEs) are dynamic chromatin structures that function as epigenetic hubs, orchestrating cell-type-specific transcriptional programs crucial for immune cell differentiation, functional specialization, and adaptive responses. These enhancer clusters integrate transcription factor (TF) networks, chromatin-modifying signals, and three-dimensional genome organization to govern lineage commitment, effector function acquisition, and metabolic reprogramming while enabling plasticity in response to environmental cues. SEs exhibit spatiotemporal regulatory properties, such as chromatin looping, phase-separated condensate formation, and stimulus-driven enhancer-promoter rewiring, all of which stabilize transcriptional outputs vital for immune homeostasis.

View Article and Find Full Text PDF

T cell receptors (TCRs) orchestrate adaptive immunity, yet the complex, repetitive architecture of the TCR loci has impeded systematic characterization of human genetic variation in the genes encoding the TCR. Using public long-read sequencing data from 2,668 donors, we build a near-complete map of common alleles in TCR V, D, and J genes, revealing amino acid variation at almost every position within V genes. We discover pervasive evidence of natural selection on TCR genes, including balancing selection on a TRAJ gene recognizing an immunodominant influenza epitope and positive selection on a TRAV gene.

View Article and Find Full Text PDF

Mutations in the RNA splicing factor are among the most common in MDS and are strongly associated with MDS with ring sideroblasts (MDS-RS). While aberrant splicing of terminal erythroid regulators has been implicated in MDS pathogenesis, the impact of mutations on early hematopoietic progenitor function remains unclear. Here, we identify CDK8, a key kinase of the mediator complex involved in transcriptional regulation, as a recurrent mis-spliced target in -mutant MDS.

View Article and Find Full Text PDF