98%
921
2 minutes
20
Background: Thymic epithelial tumors (TETs) are infrequent malignancies that arise from the anterior mediastinum. Therapeutic options for TETs, especially thymic carcinoma (TC), remain relatively constrained. This study aims to investigate the oncogenic hub gene and its underlying mechanisms in TETs, as well as to identify potential therapeutic targets.
Methods: Weighted gene co-expression network analysis (WGCNA) and differential gene expression (DEG) analysis were utilized to identify significant oncogenes using The Cancer Genome Atlas (TCGA) database. LASSO logistic regression analysis was performed to assess the association between hub genes and clinical parameters. The influence of the hub gene on promoting epithelial-mesenchymal transition (EMT), tumor progression, and regulating cancer stem cell-like properties was assessed both in vitro and in vivo. Single-cell RNA sequencing (scRNA-seq) was utilized to analyze the alterations in the tumor and its microenvironment following the administration of the hub gene's inhibitor. Multiplex immunohistochemistry (mIHC) was employed to validate the results. The potential mechanism was further elucidated through the utilization of Cleavage Under Targets and Tagmentation (CUT&Tag), RNA-sequencing, chromatin immunoprecipitation (ChIP), CUT&RUN, luciferase reporter assay, co-immunoprecipitation (Co-IP), mass spectrometry (MS) and phosphoproteomic assays.
Results: SNAI1 was identified as a hub transcription factor for TETs, and its positive correlation with the invasiveness of the disease was confirmed. Subsequent experiments revealed that the upregulation of SNAI1 augmented the migration, invasion, and EMT of TET cell lines. Furthermore, we observed that the overexpression of SNAI1 sustained cancer stem cell-like properties. ScRNA-seq demonstrated that the use of a SNAI1 inhibitor inhibited the transition of macrophages from M1 to M2 phenotype, a finding further validated by multiplex immunohistochemistry (mIHC). Phosphoinositide-3-kinase regulatory subunit 2 (PIK3R2) was identified as one of the downstream targets of SNAI1 through CUT&Tag and RNA-sequencing, a finding validated by ChIP-qPCR, CUT&RUN-qPCR, luciferase reporter and immunofluorescence assays. Co-IP, MS and phosphoproteomic assays further confirmed that PIK3R2 directly interacted with phosphorylated EphA2 (p-EphA2), facilitating downstream GSK3β/β-catenin signaling pathway.
Conclusion: The tumorigenic role of SNAI1 through the PIK3R2/p-EphA2 axis was preliminarily validated in TETs. A potential therapeutic strategy for TETs may involve the inhibition of SNAI1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11657537 | PMC |
http://dx.doi.org/10.1186/s13046-024-03243-0 | DOI Listing |
Stem Cell Rev Rep
September 2025
Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland.
Mutations in Delta Like Non-Canonical Notch Ligand 1 (DLK1), a paternally expressed imprinted gene, underlie central precocious puberty (CPP), yet the mechanism remains unclear. To test the hypothesis that DLK1 plays a role in gonadotropin releasing hormone (GnRH) neuron ontogeny, 75 base pairs were deleted in both alleles of DLK1 exon 3 with CRISPR-Cas9 in human pluripotent stem cells (hPSCs). This line, exhibiting More than 80% loss of DLK1 protein, was differentiated into GnRH neurons by dual SMAD inhibition (dSMADi), FGF8 treatment and Notch inhibition, as previously described, however, it did not exhibit accelerated GNRH1 expression.
View Article and Find Full Text PDFBackground: Nucleophosmin 1 (NPM1) mutations represent one of the most frequent genetic alterations in acute myeloid leukemia (AML). However, the prognostic significance of concurrent molecular abnormalities and clinical features in NPM1-mutated AML remains to be fully elucidated.
Methods: We retrospectively analyzed 73 adult AML patients with NPM1 mutations.
J Pathol
September 2025
Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University, Baltimore, MD, USA.
Triple-negative breast cancer (TNBC) lacks expression of estrogen receptor (ER), progesterone receptor (PR), and HER2, and remains one of the most aggressive and therapeutically challenging breast cancer subtypes, marked by early relapse, metastasis, and limited targeted treatment options. In a recent study published in The Journal of Pathology, Kuo et al provide compelling evidence that nicotine exposure, whether from tobacco smoke or e-cigarette vapor, drives TNBC progression by promoting stem-like and metastatic phenotypes. Integrating clinical datasets, patient tissues, cell lines, and in vivo models, the authors demonstrate that nicotine enhances tumor aggressiveness via coordinated upregulation of CHRNA9 and IGF1R.
View Article and Find Full Text PDFJ Pathol
September 2025
Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA.
Serous endometrial carcinoma (SEC) is one of the most lethal types of uterine cancer, responsible for about 40% of all endometrial cancer-related deaths. Cell state dynamics during the early stages of SEC remain largely unknown, thereby hindering early detection and treatment of this disease. Here, we provide a comprehensive census of cell types and their states for normal, predysplastic, and dysplastic endometrium in a genetic mouse model of SEC.
View Article and Find Full Text PDFJ Eur Acad Dermatol Venereol
September 2025
Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
Background: Persistent chemotherapy-induced alopecia (pCIA) is a distressing side effect of antineoplastic agents, imposing significant psychological burdens on cancer survivors. Despite its impact, there are no standardized guidelines for diagnosis, prevention or management.
Objective: To establish consensus-based definitions, diagnostic criteria, grading systems and management recommendations for pCIA.