98%
921
2 minutes
20
Transcription factor binding sites (TFBSs) are critical in regulating gene expression. Precisely locating TFBSs can reveal the mechanisms of action of different transcription factors in gene transcription. Various deep learning methods have been proposed to predict TFBS; however, these models often need help demonstrating ideal performance under limited data conditions. Furthermore, these models typically have complex structures, which makes their decision-making processes difficult to transparentize. Addressing these issues, we have developed a framework named BCDB. This framework integrates multi-scale DNA information and employs a dual-branch output strategy. Integrating DNABERT, convolutional neural networks (CNN), and multi-head attention mechanisms enhances the feature extraction capabilities, significantly improving the accuracy of predictions. This innovative method aims to balance the extraction of global and local information, enhancing predictive performance while utilizing attention mechanisms to provide an intuitive way to explain the model's predictions, thus strengthening the overall interpretability of the model. Prediction results on 165 ChIP-seq datasets show that BCDB significantly outperforms other existing deep learning methods in terms of performance. Additionally, since the BCDB model utilizes transfer learning methods, it can transfer knowledge learned from many unlabeled data to specific cell line prediction tasks, allowing our model to achieve cross-cell line TFBS prediction. The source code for BCDB is available on https://github.com/ZhangLab312/BCDB.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ymeth.2024.12.006 | DOI Listing |
Eur J Radiol
September 2025
Department of Radiology, Affiliated Hospital of Hebei University, Baoding 071000, China. Electronic address:
Purpose: The present study aimed to develop a noninvasive predictive framework that integrates clinical data, conventional radiomics, habitat imaging, and deep learning for the preoperative stratification of MGMT gene promoter methylation in glioma.
Materials And Methods: This retrospective study included 410 patients from the University of California, San Francisco, USA, and 102 patients from our hospital. Seven models were constructed using preoperative contrast-enhanced T1-weighted MRI with gadobenate dimeglumine as the contrast agent.
JMIR Res Protoc
September 2025
Department of Urology, Faculty of Medicine, Universitas Indonesia - Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
Background: Circumcision is a widely practiced procedure with cultural and medical significance. However, certain penile abnormalities-such as hypospadias or webbed penis-may contraindicate the procedure and require specialized care. In low-resource settings, limited access to pediatric urologists often leads to missed or delayed diagnoses.
View Article and Find Full Text PDFNeuro Endocrinol Lett
September 2025
Department of Psychiatry, University Hospital Olomouc, Faculty of Medicine, Palacky University in Olomouc, Czech Republic.
Introduction: Transgerational transmitted trauma is the transmission of psychological injuries between generations. This article uses two case vignettes to explore selected schema therapy approaches that help clients process transgenerationally transmitted trauma from their ancestors. Specific methods of imagery rescripting and chair work enable clients to transform maladaptive patterns of experiencing into healthier coping strategies, support better stress management, improve emotional regulation and communication in relationships, and encourage more profound relationships with themselves and others.
View Article and Find Full Text PDFJ Chem Inf Model
September 2025
Department of Chemistry, Delaware State University, Dover, Delaware 19901, United States.
The calculation of the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap for chemical molecules is computationally intensive using quantum mechanics (QM) methods, while experimental determination is often costly and time-consuming. Machine Learning (ML) offers a cost-effective and rapid alternative, enabling efficient predictions of HOMO-LUMO gap values across large data sets without the need for extensive QM computations or experiments. ML models facilitate the screening of diverse molecules, providing valuable insights into complex chemical spaces and integrating seamlessly into high-throughput workflows to prioritize candidates for experimental validation.
View Article and Find Full Text PDFJ Cataract Refract Surg
July 2025
Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu City, Sichuan Province, China.
Purpose: To develop and validate a multimodal deep-learning model for predicting postoperative vault height and selecting implantable collamer lens (ICL) sizes using Anterior Segment Optical Coherence Tomography (AS-OCT) and Ultrasound Biomicroscope (UBM) images combined with clinical features.
Setting: West China Hospital of Sichuan University, China.
Design: Deep-learning study.