Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Photodynamic inactivation, as a safe and effective antimicrobial technology that does not damage the organoleptic properties of the food itself, decreases the use of preservatives and is gradually gaining attention in the food industry. This study selected octyl gallate (OG) as an antimicrobial photosensitizer with eucalyptus oil as the oil phase and prepared it as an octyl gallate nanoemulsion (OG-NE) to ensure the delivery of the photosensitizer. Escherichia coli and Staphylococcus aureus inactivation with the OG-NE combined with photodynamic technology, as well as the effect on the quality of food products, was investigated. The results showed the successful preparation and homogeneous distribution of the OG-NE with an encapsulation rate of 85.18 %. The OG-NE's ability to produce single oxygen (O) was significantly higher, as shown by O production. The OG-NE combined photodynamic technique confirmed the effectiveness of microbial removal, demonstrating a significant increase in reactive oxygen species (ROS) and the permeability of the cell membrane. The effect of the OG-NE combined photodynamic technology on perch (microbiology, pH, whiteness, water holding capacity, TVB-N and TBA) and litchi (weight loss, titratable acid and sugar content) preservation was assessed. Food preservation experiments revealed that the OG-NE combined photodynamic technology exhibited a positive effect on food quality. The results indicated that the combination of the OG-NE and photodynamic technology provided a new alternative strategy for the food industry in antimicrobial and preservation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijfoodmicro.2024.111023 | DOI Listing |