Longitudinal phosphoproteomics reveals the PI3K-PAK1 axis as a potential target for recurrent colorectal liver metastases.

Cell Rep

Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; Laboratory of Proteomics and Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan. El

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The resistance of colorectal cancer liver metastases (CRLMs) to 5-fluorouracil (5-FU) chemotherapy remains a significant global health challenge. We investigated the phosphoproteomic dynamics of serial tissue sections obtained from initial metastases and recurrent tumors collected from 24 patients to address this unmet need for innovative therapeutic strategies for patients with CRLM with a poor prognosis. Our analysis revealed the activation of PAK kinase in patients with CRLM with a poor prognosis. Using an unbiased computational approach, we conducted a correlation analysis between PAK1 kinase activity and 545 drug sensitivity profiles across 35 colorectal cancer cell lines and identified PI3K inhibitors as potential therapeutic candidates. The efficacy of the FDA-approved PI3K inhibitor copanlisib was validated in 5-FU-resistant cell lines with high PAK1 kinase activity both in vitro and in vivo. This study presents an effective strategy for drug target discovery based on kinase activity, and the concept of this approach is widely applicable.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2024.115061DOI Listing

Publication Analysis

Top Keywords

kinase activity
12
liver metastases
8
colorectal cancer
8
patients crlm
8
crlm poor
8
poor prognosis
8
pak1 kinase
8
cell lines
8
longitudinal phosphoproteomics
4
phosphoproteomics reveals
4

Similar Publications

Strategies have been employed to address antimalarial drug resistance, including the exploration of new therapeutic targets. In this study, the stem bark of Dalbergia miscolobium was investigated using in vitro assays against Plasmodium falciparum and pyruvate kinase II (PyrKII), an essential enzyme for parasite development. Compounds were dereplicated from ethanolic extract (IC  = 9 µg/mL) using LC-HRMS, revealing active constituents: procyanidin A1 (2), biochanin (5) and formononetin (7).

View Article and Find Full Text PDF

Solvent-Directed Self-Assembly of Sorafenib into Spherical Particles for Enhanced Anticancer Efficacy.

Nano Lett

September 2025

KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.

Sorafenib, a clinically approved multityrosine kinase inhibitor, exhibits poor aqueous solubility, which limits its bioavailability and therapeutic efficacy. In this study, we introduce a solvent-directed self-assembly strategy to modulate the nanostructure of sorafenib without the use of external carriers or complex formulation techniques. In pure water, sorafenib forms large lamellar aggregates, whereas in 30% methanol-water mixtures, it self-assembles into uniform spherical particles approximately 450 nm in diameter.

View Article and Find Full Text PDF

Muricholic acid mediates puberty initiation via the hypothalamic TGR5 signaling pathway.

Proc Natl Acad Sci U S A

September 2025

Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.

The onset of puberty is increasingly observed at earlier ages in children, especially in girls with obesity, a trend that predisposes them to long-term metabolic and reproductive disorders in adulthood. Bile acids have emerged as pivotal signaling molecules in both metabolic and reproductive disorders, but remain unexplored in the early onset of puberty in children. Herein, we find elevated levels of muricholic acid (MCA) species in the serum of girls with central precocious puberty, which strongly correlate with indices of hypothalamic-pituitary-gonadal axis activation and can reach peak levels during puberty among healthy children.

View Article and Find Full Text PDF

The A20 binding inhibitor of nuclear factor-kappa B (NF-κB)-1 (ABIN-1) serves as a ubiquitin sensor and autophagy receptor, crucial for modulating inflammation and cell death. Our previous in vitro investigation identified the LC3-interacting region (LIR) motifs 1 and 2 of ABIN-1 as key mitophagy regulators. This study aimed to explore the in vivo biological significance of ABIN1-LIR domains using a novel CRISPR-engineered ABIN1-ΔLIR1/2 mouse model, which lacks both LIR motifs.

View Article and Find Full Text PDF

3-O-acetylrubiarbonol B preferentially targets EGFR and MET over rubiarbonol B to inhibit NSCLC cell growth.

PLoS One

September 2025

Department of Biomedicine, Health and Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan, Republic of Korea.

Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer-related deaths, remaining a significant challenge in terms of early detection, effective treatment, and improving patient survival rates. In this study, we investigated the anticancer mechanism of rubiarbonol B (Ru-B) and its derivative 3-O-acetylrubiarbonol B (ARu-B), a pentacyclic terpenoid in gefitinib (GEF)-sensitive and -resistant NSCLC HCC827 cells. Concentration- and time-dependent cytotoxicity was observed for both Ru-B and ARu-B.

View Article and Find Full Text PDF