Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Pulmonary hypertension (PH) is a pathophysiological problem that may involve several clinical symptoms and be linked to various respiratory and cardiovascular illnesses. Its diagnosis is made invasively by Right Cardiac Catheterization (RHC), which is difficult to perform routinely. Aim of the current study was to develop a Machine Learning (ML) algorithm based on the analysis of anamnestic data to predict the presence of an invasively measured PH.

Methods: 226 patients with clinical indication of RHC for suspected PH were enrolled between October 2017 and October 2020. All patients underwent a protocol of diagnostic techniques for PH according to the recommended guidelines. Machine learning (ML) approaches were considered to develop classifiers aiming to automatically detect patients affected by PH, based on the patient's characteristics, anamnestic data, and non-invasive parameters, transthoracic echocardiography (TTE) results and spirometry outcomes.

Results: Out of 51 variables of patients undergoing RHC collected, 12 resulted significantly different between patients who resulted positive and those who resulted negative at RHC. Among them 8 were selected and utilized to both train and validate an Elastic-Net Regularized Generalized Linear Model, from which a risk score was developed. The AUC of the identification model is of 83 % with an overall accuracy of 74 % [95 % CI (61 %, 84 %)], indicating very good discrimination between patients with and without the pathology.

Conclusions: The PH-targeted ML models could streamline routine screening for PH, facilitating earlier identification and better RHC referrals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648641PMC
http://dx.doi.org/10.1016/j.csbj.2024.11.031DOI Listing

Publication Analysis

Top Keywords

machine learning
12
pulmonary hypertension
8
anamnestic data
8
patients
6
rhc
5
hypertension targeted
4
targeted algorithm
4
algorithm improve
4
improve referral
4
referral heart
4

Similar Publications

Insect pupae change morphologically (e.g., pigmentation of eyes, wings, setae and legs) during the intrapuparial period.

View Article and Find Full Text PDF

Profiling the Chemical Exposomic Landscape of Esophageal Squamous Cell Carcinoma.

Environ Sci Technol

September 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

While the cancer genome is well-studied, the nongenetic exposome of cancer remains elusive, particularly for regionally prevalent cancers with poor prognosis. Here, by employing a combined knowledge- and data-driven strategy, we profile the chemical exposome of plasma from 53 healthy controls, 14 esophagitis and 101 esophageal squamous cell carcinoma (ESCC) patients, and 46 esophageal tissues across 12 Chinese provinces, integrating inorganic, endogenous, and exogenous chemicals. We first show that components of the ESCC chemical exposome mediate the relationship between ESCC-related dietary/lifestyle factors and clinic health status indicators.

View Article and Find Full Text PDF

Social Participation and Depressive Symptoms Among Older Adults.

JAMA Netw Open

September 2025

Department of Social Epidemiology, Graduate School of Medicine and School of Public Health, Kyoto University, Kyoto, Japan.

Importance: Previous studies have suggested that social participation helps prevent depression among older adults. However, evidence is lacking about whether the preventive benefits vary among individuals and who would benefit most.

Objective: To examine the sociodemographic, behavioral, and health-related heterogeneity in the association between social participation and depressive symptoms among older adults and to identify the individual characteristics among older adults expected to benefit the most from social participation.

View Article and Find Full Text PDF

Artificial intelligence (AI) is increasingly applied in nutrition science to support clinical decision-making, prevent diet-related diseases such as obesity and type 2 diabetes, and improve nutrition care in both preventive and therapeutic settings. By analyzing diverse datasets, AI systems can support highly individualized nutritional guidance. We focus on machine learning applications and image recognition tools for dietary assessment and meal planning, highlighting their potential to enhance patient engagement and adherence through mobile apps and real-time feedback.

View Article and Find Full Text PDF

Fetal standard plane detection is essential in prenatal care, enabling accurate assessment of fetal development and early identification of potential anomalies. Despite significant advancements in machine learning (ML) in this domain, its integration into clinical workflows remains limited-primarily due to the lack of standardized, end-to-end operational frameworks. To address this gap, we introduce FetalMLOps, the first comprehensive MLOps framework specifically designed for fetal ultrasound imaging.

View Article and Find Full Text PDF