A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Re-Parameterization After Pruning: Lightweight Algorithm Based on UAV Remote Sensing Target Detection. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lightweight object detection algorithms play a paramount role in unmanned aerial vehicles (UAVs) remote sensing. However, UAV remote sensing requires target detection algorithms to have higher inference speeds and greater accuracy in detection. At present, most lightweight object detection algorithms have achieved fast inference speed, but their detection precision is not satisfactory. Consequently, this paper presents a refined iteration of the lightweight object detection algorithm to address the above issues. The MobileNetV3 based on the efficient channel attention (ECA) module is used as the backbone network of the model. In addition, the focal and efficient intersection over union (FocalEIoU) is used to improve the regression performance of the algorithm and reduce the false-negative rate. Furthermore, the entire model is pruned using the convolution kernel pruning method. After pruning, model parameters and floating-point operations (FLOPs) on VisDrone and DIOR datasets are reduced to 1.2 M and 1.5 M and 6.2 G and 6.5 G, respectively. The pruned model achieves 49 frames per second (FPS) and 44 FPS inference speeds on Jetson AGX Xavier for VisDrone and DIOR datasets, respectively. To fully exploit the performance of the pruned model, a plug-and-play structural re-parameterization fine-tuning method is proposed. The experimental results show that this fine-tuned method improves mAP@0.5 and mAP@0.5:0.95 by 0.4% on the VisDrone dataset and increases mAP@0.5:0.95 by 0.5% on the DIOR dataset. The proposed algorithm outperforms other mainstream lightweight object detection algorithms (except for FLOPs higher than SSDLite and mAP@0.5 Below YOLOv7 Tiny) in terms of parameters, FLOPs, mAP@0.5, and mAP@0.5:0.95. Furthermore, practical validation tests have also demonstrated that the proposed algorithm significantly reduces instances of missed detection and duplicate detection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11644868PMC
http://dx.doi.org/10.3390/s24237711DOI Listing

Publication Analysis

Top Keywords

lightweight object
16
object detection
16
detection algorithms
16
remote sensing
12
detection
10
uav remote
8
target detection
8
detection lightweight
8
inference speeds
8
visdrone dior
8

Similar Publications