98%
921
2 minutes
20
root rot (FORR) is an important disease threatening soybean production. The development of marker-assisted selection (MAS) molecular markers will help accelerate the disease resistance breeding process and achieve the breeding goal of improving soybean disease resistance. This study evaluated the FORR disease resistance of 356 soybean germplasm accessions (SGAs) and screened resistance-related loci using genome-wide association analysis (GWAS) to develop molecular markers for MAS. A total of 1,355,930 high-quality SNPs were analyzed, 150 SNP sites significantly associated with FORR resistance were identified, and these sites were distributed within 41 QTLs. Additionally, 240 candidate genes were screened near these QTL regions, involving multiple functions such as hormone metabolism, signal transduction, stress defense, and growth regulation. Cleaved amplified polymorphic sequence (CAPS) and Kompetitive Allele-Specific PCR (KASP) molecular markers were developed based on candidate genes with significant SNP loci and beneficial haplotypes. The CAPS markers, S15_50486939-CAPS1 and S15_50452626-CAPS2, can effectively distinguish resistant and sensitive genotypes through enzyme digestion. The KASP marker is based on S07_19078765-G/T and exhibits a genotype clustering pattern consistent with disease resistance, demonstrating its application value in breeding. The CAPS and KASP markers developed in this study can provide reliable tools for MAS in FORR disease-resistant varieties. The research results will help reveal the genetic structure of FORR disease resistance and provide support for efficient breeding.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11640847 | PMC |
http://dx.doi.org/10.3390/ijms252312573 | DOI Listing |
Cell Mol Biol (Noisy-le-grand)
September 2025
Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Despite significant advancements in the treatment of non-small cell lung cancer (NSCLC) using conventional therapeutic methods, drug resistance remains a major factor contributing to disease recurrence. In this study, we aimed to explore the potential benefits of combining PI3K inhibition with Cisplatin in the context of NSCLC-derived A549 cells. Human non-small cell lung cancer A549 cells were cultured and treated with BKM120, cisplatin, or their combination.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
September 2025
Associate Professor, School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh-Punjab 147301, India.
Alcoholic fatty liver disease (AFLD) is a leading cause of chronic liver disease worldwide, contributing to significant morbidity and mortality. Despite its growing prevalence, no FDA-approved pharmacological treatments exist, leaving lifestyle modifications as the primary intervention. AFLD pathogenesis involves a complex interplay of lipid accumulation, oxidative stress, insulin resistance, and inflammation, highlighting the need for innovative therapeutic approaches.
View Article and Find Full Text PDFBioDrugs
September 2025
Department of Nephrology, Instituto de Investigación Hospital "12 de Octubre" (imas12), Avda. De Córdoba s/n, 28041, Madrid, Spain.
Anti-CD20 monoclonal antibodies are gaining clinical relevance in the nephrology community due to their demonstrated efficacy and favorable safety profiles across short-, medium-, and long-term use. Initially developed for hematologic malignancies and multiple sclerosis, B-cell depletion therapies are now being investigated across a broader spectrum of autoimmune diseases, including glomerulopathies, both with and without associated podocytopathy. Recent advances have led to the development of novel anti-CD20 agents that are being used not only as potential alternatives to corticosteroids but also as adjunctive therapies in complex clinical settings.
View Article and Find Full Text PDFPlant Mol Biol
September 2025
Institute of Biological Chemistry, The Washington State University, Pullman, WA, 99164, USA.
Legumes are essential for agriculture and food security. Biotic and abiotic stresses pose significant challenges to legume production, lowering productivity levels. Most legumes must be genetically improved by introducing alleles that give pest and disease resistance, abiotic stress adaptability, and high yield potential.
View Article and Find Full Text PDFPlant Dis
September 2025
Cornell University, Plant Pathology & Plant-Microbe Biology, Geneva, New York, United States;
Septoria leaf spot, caused by the fungal pathogen , is a common disease of field-grown hemp ( L.). The development of disease-resistant cultivars presents a promising strategy for managing this disease.
View Article and Find Full Text PDF