98%
921
2 minutes
20
Obesity is one of the world's major public health challenges. Its pathogenesis and comorbid metabolic disorders share common mechanisms, such as mitochondrial or endoplasmic reticulum dysfunction or oxidative stress, gut dysbiosis, chronic inflammation and altered autophagy. Numerous pro-autophagy dietary interventions are being investigated for their potential obesity-preventing or therapeutic effects. We summarize current data on the relationship between autophagy and obesity, and discuss various dietary interventions as regulators of autophagy-related genes in the prevention and ultimate treatment of obesity in humans, as available in scientific databases and published through July 2024. Lifestyle modifications (such as calorie restriction, intermittent fasting, physical exercise), including following a diet rich in flavonoids, antioxidants, specific fatty acids, specific amino acids and others, have shown a beneficial role in the induction of this process. The activation of autophagy through various nutritional interventions tends to elicit a consistent response, characterized by the induction of certain kinases (including AMPK, IKK, JNK1, TAK1, ULK1, and VPS34) or the suppression of others (like mTORC1), the deacetylation of proteins, and the alleviation of inhibitory interactions between BECN1 and members of the Bcl-2 family. Significant health/translational properties of many nutrients (nutraceuticals) can affect chronic disease risk through various mechanisms that include the activation or inhibition of autophagy. The role of nutritional intervention in the regulation of autophagy in obesity and its comorbidities is not yet clear, especially in obese individuals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643440 | PMC |
http://dx.doi.org/10.3390/nu16234003 | DOI Listing |
Mol Plant Pathol
September 2025
National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.
Among eukaryotes, Rab GTPases are critical for intracellular membrane trafficking and possess various functions. Oomycetes, responsible for many devastating plant diseases, pose a significant threat to global agriculture. However, the functions of Rab GTPases in oomycetes are largely uncharted.
View Article and Find Full Text PDFCancer Med
September 2025
Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan.
Background: Esophageal squamous cell carcinoma (ESCC) represents an aggressive cancer type associated with poor prognosis, often treated with neoadjuvant chemotherapy (NAC) using cisplatin-based regimens. However, cisplatin resistance limits therapeutic efficacy, necessitating a deeper understanding of resistance mechanisms. L-type amino acid transporter 1 (LAT1) plays a crucial role in amino acid uptake and is linked to cancer cell survival through activation of the mammalian target of rapamycin (mTOR) pathway.
View Article and Find Full Text PDFFront Immunol
September 2025
Department of Pathophysiology, School of Basic Medical Science, Xinjiang Medical University, Urumqi, Xinjiang, China.
Objective: Diabetes mellitus combined with nonalcoholic fatty liver disease is a prevalent and intricate metabolic disorder that presents a significant global health challenge, imposing economic and emotional burdens on society and families. An in-depth understanding of the disease pathogenesis is crucial for enhancing diagnostic and therapeutic efficacy. Therefore, the study aims to identify and validate autophagy-related diagnostic biomarkers associated with T2DM-associated MAFLD, investigate regulatory mechanisms in disease progression, and explore cellular diversity within the same tissue using single-cell sequencing data.
View Article and Find Full Text PDFBiochem Biophys Rep
December 2025
Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
Background: Acute myeloid leukemia (AML) involves uncontrolled proliferation of myeloid progenitor cells and carries a poor prognosis. The PI3K/AKT/mTOR pathway plays a key role in AML pathogenesis by regulating cancer cell proliferation and survival. This study investigates the effects of inhibiting the PI3K/AKT/mTOR pathway on autophagy in AML cell lines, aiming to support targeted therapy development that modulates autophagy.
View Article and Find Full Text PDFCell Death Differ
September 2025
Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan.
Nucleotide metabolism is essential for fundamental cellular functions such as growth, repair and proliferation. Emerging evidence suggests that metabolic pathways also influence programmed cell death (PCD), though the underlying mechanisms remain poorly understood. One model organism that has provided key insights into the regulation of PCD is Caenorhabditis elegans (C.
View Article and Find Full Text PDF