Patient-Specific Circulating Tumor DNA for Monitoring Response to Menin Inhibitor Treatment in Preclinical Models of Infant Leukemia.

Cancers (Basel)

Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW 2052, Australia.

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: In infant ()-rearranged (MLL-r) acute lymphoblastic leukemia (ALL), early relapse and treatment response are currently monitored through invasive repeated bone marrow (BM) biopsies. Circulating tumor DNA (ctDNA) in peripheral blood (PB) provides a minimally invasive alternative, allowing for more frequent disease monitoring. However, a poor understanding of ctDNA dynamics has hampered its clinical translation. We explored the predictive value of ctDNA for detecting minimal/measurable residual disease (MRD) and drug response in a patient-derived xenograft (PDX) model of infant MLL-r ALL.

Methods: Immune-deficient mice engrafted with three MLL-r ALL PDXs were monitored for ctDNA levels before and after treatment with the menin inhibitor SNDX-50469.

Results: The amount of ctDNA detected strongly correlated with leukemia burden during initial engraftment prior to drug treatment. However, following SNDX-50469 treatment, the leukemic burden assessed by either PB leukemia cells through flow cytometry or ctDNA levels through droplet digital polymerase chain reaction (ddPCR) was discrepant. This divergence could be attributed to the persistence of leukemia cells in the spleen and BM, highlighting the ability of ctDNA to reflect disease dynamics in key leukemia infiltration sites.

Conclusions: Notably, ctDNA analysis proved to be a superior predictor of MRD compared to PB assessment alone, especially in instances of low disease burden. These findings highlight the potential of ctDNA as a sensitive biomarker for monitoring treatment response and detecting MRD in infant MLL-r ALL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11640178PMC
http://dx.doi.org/10.3390/cancers16233990DOI Listing

Publication Analysis

Top Keywords

ctdna
9
circulating tumor
8
tumor dna
8
menin inhibitor
8
treatment response
8
infant mll-r
8
ctdna levels
8
leukemia cells
8
treatment
6
leukemia
6

Similar Publications

Background: Current aftercare in breast cancer survivors aims to detect local recurrences or contralateral disease, while the detection of distant metastases has not been a central focus due to a lack of evidence supporting an effect on overall survival. However, the data underpinning these guidelines are mainly from trials of the 1980s/1990s and have not been updated to reflect the significant advancements in diagnostic and therapeutic options that have emerged over the past 40 years. In this trial, the aim is to test whether a liquid biopsy-based detection of (oligo-) metastatic disease at an early pre-symptomatic stage followed by timely treatment can impact overall survival compared to current standard aftercare.

View Article and Find Full Text PDF

Introduction Neuroendocrine tumors (NETs) are a rare and heterogeneous group of neoplasms with both clinical and genetic diversity. The clinical applicability of molecular profiling using liquid biopsy for identifying actionable drug targets and prognostic indicators in patients with advanced NETs remains unclear. Methods In this study, we utilized a custom-made 37 genes panel of circulating tumor DNA (ctDNA) based on next-generation sequencing (NGS) in 47 patients with advanced NETs.

View Article and Find Full Text PDF

Purpose: This study aimed to identify breast cancer-specific circulating tumor DNA (ctDNA) methylation markers that correspond to tissue DNA methylation.

Methods: Using The Cancer Genome Atlas (TCGA) database, we selected breast cancer-specific DNA methylation markers. The methylation and expression patterns of candidate genes were analyzed in breast cancer cell lines and tissue samples.

View Article and Find Full Text PDF

Immune checkpoint blockade (ICB) is standard of care in advanced diffuse pleural mesothelioma (DPM), but its role in the perioperative management of DPM is unclear. In tandem, circulating tumor DNA (ctDNA) ultra-sensitive residual disease detection has shown promise in providing a molecular readout of ICB efficacy across resectable cancers. This phase 2 trial investigated neoadjuvant nivolumab and nivolumab/ipilimumab in resectable DPM along with tumor-informed liquid biopsy residual disease assessments.

View Article and Find Full Text PDF