scPAS: single-cell phenotype-associated subpopulation identifier.

Brief Bioinform

College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 157 Baojian Road, Heilongjiang 150081, China.

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Despite significant advancements in single-cell sequencing analysis for characterizing tissue sample heterogeneity, identifying the associations between cell subpopulations and disease phenotypes remains a challenging task. Here, we introduce scPAS, a new bioinformatics tool designed to integrate bulk data to identify phenotype-associated cell subpopulations within single-cell data. scPAS employs a network-regularized sparse regression model to quantify the association between each cell in single-cell data and a phenotype. Additionally, it estimates the significance of these associations through a permutation test, thereby identifying phenotype-associated cell subpopulations. Utilizing simulated data and various single-cell datasets from breast carcinoma, ovarian cancer, and atherosclerosis, as well as spatial transcriptomics data from multiple cancers, we demonstrated the accuracy, flexibility, and broad applicability of scPAS. Evaluations on large datasets revealed that scPAS exhibits superior operational efficiency compared to other methods. The open-source scPAS R package is available at GitHub website: https://github.com/aiminXie/scPAS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11649301PMC
http://dx.doi.org/10.1093/bib/bbae655DOI Listing

Publication Analysis

Top Keywords

cell subpopulations
12
phenotype-associated cell
8
single-cell data
8
scpas
6
data
5
scpas single-cell
4
single-cell phenotype-associated
4
phenotype-associated subpopulation
4
subpopulation identifier
4
identifier despite
4

Similar Publications

Warfarin is a widely used vitamin K antagonist (VKA) with known pleiotropic effects beyond anticoagulation. Preclinical and case-control evidence suggests that warfarin may affect hematopoiesis, but longitudinal human evidence is lacking. To explore this potential effect, we conducted a post-hoc analysis of participants in the Hokusai-VTE and ENGAGE AF-TIMI 48 trials, which randomized patients to warfarin or the direct oral anticoagulant edoxaban with routine laboratory testing at predefined follow-up visits.

View Article and Find Full Text PDF

Background: Oral emtricitabine/tenofovir disoproxil fumarate (F/TDF) preexposure prophylaxis (PrEP) effectiveness against HIV acquisition highly depends on adherence. For men who have sex with men, a dosing study in the United States (US) population defined clinically meaningful tenofovir diphosphate (TFV-DP) thresholds in dried blood spots (DBS) based on the rounded 25th percentile for 2, 4, and 7 doses/week as 350, 700, and 1,250 fmol/punch. However, divergent efficacy results in the first generation randomized clinical trials of F/TDF PrEP among African women led to several hypotheses to question whether the pharmacology and adherence requirement for oral F/TDF PrEP may be different in cisgender women compared to what is already established for men.

View Article and Find Full Text PDF

In the event of a large-scale radiological or nuclear emergency, a rapid, high-throughput screening tool will be essential for efficient triage of potentially exposed individuals, optimizing scarce medical resources and ensuring timely care. The objective of this work was to characterize the effects of age and sex on two intracellular lymphocyte protein biomarkers, BAX and p53, for early radiation exposure classification in the human population, using an imaging flow cytometry-based platform for rapid biomarker quantification in whole blood samples. Peripheral blood samples from male and female donors, across three adult age groups (young adult, middle-aged, senior) and a juvenile cohort, were X-irradiated (0-5 Gy), and biomarker expression was quantified at two- and three-days post-exposure.

View Article and Find Full Text PDF

Sorting nexin 3 promotes ischemic retinopathy through RIP1- and RIP3-mediated myeloid cell necroptosis and mitochondrial fission.

Proc Natl Acad Sci U S A

September 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug De

Proliferative retinopathy is a leading cause of irreversible blindness in humans; however, the molecular mechanisms behind the immune cell-mediated retinal angiogenesis remain poorly elucidated. Here, using single-cell RNA sequencing in an oxygen-induced retinopathy (OIR) model, we identified an enrichment of sorting nexin (SNX)-related pathways, with SNX3, a member of the SNX family that is involved in endosomal sorting and trafficking, being significantly upregulated in the myeloid cell subpopulations of OIR retinas. Immunostaining showed that SNX3 expression is markedly increased in the retinal microglia/macrophages of mice with OIR, which is mainly located within and around the neovascular tufts.

View Article and Find Full Text PDF

Lymphotoxin β receptor (LTβR/TNFRSF3) signaling plays a crucial role in immune defense. Notably, LTβR-deficient (LTβR) mice exhibit severe defects in innate and adaptive immunity against various pathogens and succumb to infection. Here, we investigated the bone marrow (BM) and peritoneal cavity (PerC) compartments of LTβR mice during infection, demonstrating perturbed B-cell and T-cell subpopulations in the absence of LTβR signaling.

View Article and Find Full Text PDF