98%
921
2 minutes
20
The US Geological Survey (USGS) is selecting and prioritizing basins, known as Integrated Water Science basins, for monitoring and intensive study. Previous efforts to aid in this selection process include a scientifically defensible and quantitative assessment of basins facing human-caused water resource challenges (Van Metre et al. in Environmental Monitoring and Assessment, 192(7), 458 2020). In the present work, we explore this ranking process based on water quality considerations, specifically salinity and salinization. We selected top candidate basins to study salinity and salinization issues in 18 hydrologic regions that include 163 candidate basins. Our prioritization is based on quantitative assessment of sources of salinity, drivers of change, and receptors that must respond to those sources and drivers. Source terms represented in the prioritization include geology, depth to brackish groundwater, stream conductivity, chloride in precipitation, urban and agricultural land use, application of road salt as a deicer, and irrigation. Drivers represented in prioritization include changes in chemical weathering as a result of changes in rainwater chemistry. Receptors include measures of water stress, measurements of stream ecological health, and socioeconomic factors. In addition, we present research activities for the USGS on salinity and salinization that can be pursued in these basins including assessment of sources, pathways, and loadings; predicting and understanding changes in sources, peaks, and trends; understanding the components of salinity and mobilization of contaminants; understanding the relationship between salinization and changing ecosystems; and developing knowledge on the causes and distribution of groundwater salinity, brackish water resources, and challenges related to desalination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11649729 | PMC |
http://dx.doi.org/10.1007/s10661-024-13264-z | DOI Listing |
Appl Biochem Biotechnol
September 2025
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
Marine-derived enzymes often show distinct physiological properties and great potential for industrial use. Salt ions may improve the stability and expression efficiency of marine enzymes, which requires salt-resistant host based expression platform. Aspergillus oryzae of good protein expression and secretion was evaluated and explored for this purpose.
View Article and Find Full Text PDFArch Microbiol
September 2025
Department of Biological Sciences, Wichita State University, 26, 1845 Fairmount, Wichita, KS, 67260, USA.
Freezing point depression due to high salt concentration is crucial for liquid water to exist on cold worlds, expanding special regions where habitats are plausible. Determination of the growth tolerances of terrestrial microbes in analog systems impacts planetary protection protocols aimed at preventing interference with life detection missions or potential native ecosystems on celestial bodies. We measured the salinity tolerances of 18 salinotolerant bacteria (Bacillus, Halomonas, Marinococcus, Nesterenkonia, Planococcus, Salibacillus, and Terribacillus).
View Article and Find Full Text PDFAdv Mater
September 2025
Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
Global water scarcity demands next-generation desalination technologies that transcend the limitations of energy-intensive processes and salt accumulation. Herein, a groundbreaking interfacial solar steam generation system capable of simultaneous hypersaline desalination and ambient energy harvesting is introduced. Through hierarchical hydrogel architecture incorporating a central vertical channel and radial channels with gradient apertures, the design effectively decouples salt transport and water evaporation: solar-driven fluid convection directs water outward for evaporation, while inward salt migration prevents surface crystallization and redistributes excess heat.
View Article and Find Full Text PDFJ Exp Bot
September 2025
Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133, Milan (MI), Italy.
Heterosis refers to the superior performance of hybrids over their parents (inbred lines) in one or more characteristics. Hence, understanding this process is crucial for addressing food insecurity. This review explores the traditional genetic models proposed to explain heterosis and integrates them with emerging perspectives such as epigenetic studies and multi-omics approaches which are increasingly used to investigate the molecular basis of heterosis in plants.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
Earth and Environmental Sciences, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States.
Mining metals for the advancement of society requires innovative and cost-effective remediation strategies that protect the environment and, ideally, allow for concentration and recovery of metals from waste streams. Microbially mediated strategies that remove metals from aqueous waste streams via sorption and/or oxidation-reduction reactions show promise as eco-friendly, cost-effective solutions. Our objective was to use Mn-oxidizing fungi, isolated from the Soudan Underground Mine State Park, MN, a high-salinity, mine-impacted environment, to sequester transition metals Mn, Co, Cu, and Ni.
View Article and Find Full Text PDF