Predicting High-risk Lung Adenocarcinoma in Solid and Part-solid Nodules on Low-dose CT: A Multicenter Study.

Acad Radiol

Department of Radiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China (J.L., Y.L., Y.L., L.G., H.Q., P.Z.). Electronic address: penghyzh

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rationale And Objectives: High-grade patterns, visceral pleural invasion, lymphovascular invasion, spread through air spaces, and lymph node metastasis are high-risk factors and associated with poor prognosis in lung adenocarcinomas (LUADs). This study aimed to construct and validate a radiomic model and a radiographic model derived from low-dose CT (LDCT) for predicting high-risk LUADs in solid and part-solid nodules.

Materials And Methods: This study retrospectively enrolled 658 pathologically confirmed LUADs from July 2018 to December 2022 from four centers, which were divided into training set (n=411), internal validation set (n=139), and external validation set (n=108). Radiomic features and radiographic features including maximal diameter, consolidation/tumor ratio (CTR), and semantic features, were obtained to construct a radiomic model and a radiographic model through multivariable logistic regression. Area under receiver operating characteristic curve (AUC) was utilized to assess the diagnostic performance of the models.

Results: Three radiomic features (GLCM_Correlation, GLSZM_SmallAreaEmphasis, and GLDM_LargeDependenceHighGrayLevelEmphasis) and four radiographic features (maximal diameter, CTR, spiculation, and pleural indentation) were selected to build models. The radiomic model yielded AUCs of 0.916 in the internal validation set and 0.938 in the external validation set, which were significantly higher than the AUCs of the radiographic model (0.916 vs. 0.868, P=0.014 and 0.938 vs. 0.880, P=0.002).

Conclusion: Our LDCT-based radiomic model enabled non-invasive identification of high-risk LUADs in solid and part-solid nodules with good diagnostic performance and might assist in case-specific decision-making in lung cancer screening.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.acra.2024.11.059DOI Listing

Publication Analysis

Top Keywords

radiomic model
16
validation set
16
solid part-solid
12
radiographic model
12
predicting high-risk
8
part-solid nodules
8
model radiographic
8
high-risk luads
8
luads solid
8
internal validation
8

Similar Publications

Objectives: Lymph node metastasis (LNM) is an important factor affecting the stage and prognosis of patients with lung adenocarcinoma. The purpose of this study is to explore the predictive value of the stacking ensemble learning model based on F-FDG PET/CT radiomic features and clinical risk factors for LNM in lung adenocarcinoma, and elucidate the biological basis of predictive features through pathological analysis.

Methods: Ninety patients diagnosed with lung adenocarcinoma who underwent PET/CT were retrospectively analyzed and randomly divided into the training and testing sets in a 7:3 ratio.

View Article and Find Full Text PDF

Purpose: Identifying radiomics features that help predict whether glioblastoma patients are prone to developing epilepsy may contribute to an improvement of preventive treatment and a better understanding of the underlying pathophysiology.

Materials And Methods: In this retrospective study, 3-T MRI data of 451 pretreatment glioblastoma patients (mean age: 61.2 ± 11.

View Article and Find Full Text PDF

Background: Tumor deposits (TDs) are an important prognostic factor in rectal cancer. However, integrated models combining clinical, habitat radiomics, and deep learning (DL) features for preoperative TDs detection remain unexplored.

Purpose: To investigate fusion models based on MRI for preoperative TDs identification and prognosis in rectal cancer.

View Article and Find Full Text PDF

Background: Predicting the recurrence risk of NMIBC after TURBT is crucial for individualized clinical treatment.

Objective: The objective of this study is to evaluate the ability of radiomic feature analysis of intratumoral and peritumoral regions based on computed tomography (CT) imaging to predict recurrence in non-muscle-invasive bladder cancer (NMIBC) patients who underwent transurethral resection of bladder tumor (TURBT).

Methods: A total of 233 patients with NMIBC who underwent TURBT were retrospectively analyzed.

View Article and Find Full Text PDF