98%
921
2 minutes
20
Hypothalamic kisspeptin (Kiss1) neurons are vital for pubertal development and reproduction. Arcuate nucleus Kiss1 (Kiss1) neurons are responsible for the pulsatile release of gonadotropin-releasing hormone (GnRH). In females, the behavior of Kiss1 neurons, expressing Kiss1, neurokinin B (NKB), and dynorphin (Dyn), varies throughout the ovarian cycle. Studies indicate that 17β-estradiol (E2) reduces peptide expression but increases () mRNA and glutamate neurotransmission in these neurons, suggesting a shift from peptidergic to glutamatergic signaling. To investigate this shift, we combined transcriptomics, electrophysiology, and mathematical modeling. Our results demonstrate that E2 treatment upregulates the mRNA expression of voltage-activated calcium channels, elevating the whole-cell calcium current that contributes to high-frequency burst firing. Additionally, E2 treatment decreased the mRNA levels of canonical transient receptor potential (TPRC) 5 and G protein-coupled K (GIRK) channels. When channels in Kiss1 neurons were deleted using CRISPR/SaCas9, the slow excitatory postsynaptic potential was eliminated. Our data enabled us to formulate a biophysically realistic mathematical model of Kiss1 neurons, suggesting that E2 modifies ionic conductances in these neurons, enabling the transition from high-frequency synchronous firing through NKB-driven activation of TRPC5 channels to a short bursting mode facilitating glutamate release. In a low E2 milieu, synchronous firing of Kiss1 neurons drives pulsatile release of GnRH, while the transition to burst firing with high, preovulatory levels of E2 would facilitate the GnRH surge through its glutamatergic synaptic connection to preoptic Kiss1 neurons.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643640 | PMC |
http://dx.doi.org/10.7554/eLife.96691 | DOI Listing |
Int J Endocrinol
July 2025
Department of Obstetrics and Gynecology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan.
Neurotensin (NT) is a hypothalamic peptide that acts as a neurohormone and exerts a potent vascular effect. NT is also implicated in regulating the reproductive system. In the present study, we examined the role of NT in the hypothalamic-pituitary-gonadal axis using rat and cell-based models.
View Article and Find Full Text PDFJ Neuroendocrinol
August 2025
Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
Kisspeptin neurons play a critical role in the estradiol feedback effects on gonadotropin-releasing hormone (GnRH) neurons and luteinizing hormone (LH) secretion. Endogenous opioid peptides regulate LH secretion, but the neuroendocrine mechanisms involved remain elusive. We used RNAscope to characterize the expression of kappa (Oprk1)-, mu (Oprm1)-, and delta (Oprd1)-opioid receptors in GnRH (Gnrh1) neurons and kisspeptin neurons of the rostral periventricular area of the third ventricle (Kiss1) and arcuate nucleus (Kiss1) in cycling mice and rats with physiological low (metestrus) and high (proestrus) levels of ovarian steroids.
View Article and Find Full Text PDFElife
July 2025
Harvard Medical School, Boston, United States.
Inactivating mutations in the melanocortin 4 receptor () gene cause monogenic obesity. Interestingly, female patients also display various degrees of reproductive disorders, in line with the subfertile phenotype of Mc4r KO female mice. However, the cellular mechanisms by which MC4R regulates reproduction are unknown.
View Article and Find Full Text PDFEnergy expenditure (EE) is essential for metabolic homeostasis, yet its central regulation remains poorly understood. Here, we identify arcuate Kiss1 neurons as key regulators of EE in male mice. Ablation of these neurons induced obesity, while their chemogenetic activation increased brown adipose tissue (BAT) thermogenesis without affecting food intake.
View Article and Find Full Text PDFEndocr Connect
July 2025
L Fu, Department of Child and Adolescent Health, School of Public Health, Bengbu Medical University, Bengbu Medical University, Bengbu, 233030, China.
Objective: Emerging evidence links prenatal androgen excess to altered pubertal timing, yet the neuroendocrine mechanisms mediating this effect in male offspring remain poorly characterized. This study aimed to investigate the effects of prenatal androgen exposure on the timing of puberty onset in male offspring and the role of KNDy neurons in this process.
Methods: Eight-week-old pregnant Sprague-Dawley rats (n=16) were randomized into control (olive oil) and prenatal androgen (PNA, testosterone injection) groups (n=8 per group).