98%
921
2 minutes
20
RNA methylation plays a central regulatory role in plant biology and is a relatively new target for plant improvement efforts. In nearly all cases, perturbation of the RNA methylation machinery results in deleterious phenotypes. However, a recent landmark paper reported that transcriptome-wide use of the human RNA demethylase FTO substantially increased the yield of rice and potatoes. Here, we have performed the first independent replication of those results and demonstrated broader transferability of the trait, finding increased flower and fruit count in the model species . We also performed RNA-seq of our FTO-transgenic plants, which we analyzed in conjunction with previously published datasets to detect several previously unrecognized patterns in the functional and structural classification of the upregulated and downregulated genes. From these, we present mechanistic hypotheses to explain these surprising results with the goal of spurring more widespread interest in this promising new approach to plant engineering.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11636547 | PMC |
http://dx.doi.org/10.1002/pld3.70000 | DOI Listing |
Mol Cell Proteomics
September 2025
Systems Biology Initiative, School of Biotechnology & Biomolecular Sciences, UNSW Sydney, Australia; ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems, UNSW Sydney, Australia. Electronic address:
Phosphorylation of histone lysine demethylases is an important mechanism by which the cell modulates chromatin dynamics to regulate its response to stress. There is evidence that the Saccharomyces cerevisiae H3K36me2/3 demethylase, Rph1p, is an integrator of many signalling events. However, the regulatory function of most Rph1p phosphosites in stress response pathways remains unknown.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
School of Life Sciences, Anhui Medical University, Hefei, 230032, China; Translational Research Institute of Henan Provincial People's Hospital, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metaboli
Melanoma is the most aggressive and lethal form of skin cancer, posing significant challenges for prognosis assessment and treatment. Recently, metabolic reprogramming and epigenetic regulation have gained attention for their roles in cancer progression. The role of the key metabolic enzyme dihydrolipoic acid succinyltransferase (DLST) in cancer is currently unclear.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
September 2025
Department of General Surgery, Tianzhu County People's Hospital, Qiandongnan, Guizhou 556699, China.
Colorectal cancer (CRC) remains one of the most lethal malignancies globally, driven by complex molecular mechanisms that contribute to its progression and metastasis. This study focuses on the role of N1-methyladenosine (mA) RNA methylation in CRC, particularly its effect on Rab Interacting Lysosomal Protein-Like 1 (RILPL1) expression and the downstream activation of the CaMKII/CREB signaling pathway. Bioinformatics analysis identified RILPL1 as a key gene associated with poor CRC prognosis, exhibiting increased expression levels in cancerous tissues, with further elevation in metastatic samples.
View Article and Find Full Text PDFJ Extracell Vesicles
September 2025
State Key Laboratory of Metabolism and Regulation in Complex Organisms, Hubei Provincial Research Center for Basic Biological Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA Institute, Wuhan University, Wuhan, China.
Tumour progression depends on the bidirectional interactions between cancer and stroma in the heterogeneous tumour microenvironment (TME) partially through extracellular vesicles (EVs). However, the secretary mechanism and biological effect of cancer cell derived EVs on tumour survival under starvation is poorly defined. Here, we identify cancer cells selectively secrete miR-33a with the assistance of aconitase 1 (ACO1), an iron-responsive RNA binding protein, under glucose starvation and lower iron level, which affiliates the binding capability of miR-33a and ACO1.
View Article and Find Full Text PDFJ Immunother Cancer
September 2025
Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, Alabama, USA
RNA molecules are subject to extensive post-transcriptional modifications that fine-tune their stability, localization, and function. Among the more than 100 known RNA modifications, N6-methyladenosine (mA) is the most abundant internal mark on eukaryotic messenger RNAs. This dynamic modification is installed by methyltransferases ("writers"), removed by demethylases ("erasers"), and interpreted by RNA-binding proteins ("readers") to modulate gene expression.
View Article and Find Full Text PDF