98%
921
2 minutes
20
(R)-selective amine transaminases (R-ATAs) show considerable potential for the asymmetric synthesis of chiral drug intermediates. However, the low catalytic efficiency of natural R-ATAs toward bulky ketone substrates, such as N-heterocyclic compounds, severely limits its industrial application. In this study, five putative (R)-ATAs were mined from NCBI database, among which MnTA showed the highest activity for N-Boc-3-pyrrolidinone (1a) and N-Boc-3-piperidone (2a), and its crystal structure was performed. Furthermore, a structure-guided engineering strategy combined with directed evolution and in silico design was executed. Four key sites for substrate binding were identified based on alanine scanning. Then, a saturated mutation library was constructed, and residues G66 and F127 were found to be the key sites affecting substrate binding. By further combining mutation and iterative saturation mutation, variants with markedly improved activity were obtained. The optimal mutant MnTA-M1 (F127M) and MnTA-M5 (G66L/H67N/F127M/L160I) also displayed significantly enhanced activity toward various cyclic ketones or bulky N-heterocyclic ketone analogs. Finally, the gram-scale synthesis of (R)-3-amino-N-Boc-pyrrolidin (1b) and (R)-3-amino-N-Boc-piperidine (2b) was performed by the best mutants, achieving the space-time yields (STY) of 108 and 214 g/L·d, respectively. This research provides efficient biocatalysts for the synthesis of various chiral N-heterocyclic amines, along with a structural insight into the molecular mechanism for enhanced catalytic performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.138591 | DOI Listing |
Top Curr Chem (Cham)
September 2025
Department of Organic Chemistry I, Faculty of Pharmacy and Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de La Universidad 7, 01006, Vitoria-Gasteiz, Spain.
Aziridines, structurally related to epoxides, are among the most challenging and fascinating heterocycles in organic chemistry due to their increasing applications in asymmetric synthesis, medicinal chemistry, and materials science. These three-membered nitrogen-containing rings serve as key intermediates in the synthesis of chiral amines, complex molecules, and pharmaceutically relevant compounds. This review provides an overview of recent progress in catalytic asymmetric aziridination, focusing on novel methodologies, an analysis of the scope and limitations of each approach, and mechanistic insights.
View Article and Find Full Text PDFOrg Lett
September 2025
Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, P.R. China.
Herein, we report the first regio- and enantioselective synthesis of tetrahydropyrido[2,3-]pyrazines using a chiral iridacycle catalyst. Pyridyl diamines and diketones undergo sequential annulation and asymmetric transfer hydrogenation of the generated pyrido[2,3-]pyrazine intermediates. This method provides diverse fused N-heterocycles in high yields (up to 95%) and enantioselectivity (98.
View Article and Find Full Text PDFAnal Chem
September 2025
Institute of Digitized Medicine and Intelligent Technology, Wenzhou Medical University, Wenzhou 325000, P. R. China.
Surface-enhanced Raman spectroscopy (SERS) has shown potential for early disease diagnosis via urinary metabolomics, but still faces challenges in achieving stable hot spots and processing complex clinical data. In this study, the preparation of chiral gold nanostars with precisely controllable branch size, number, and sharpness was realized by investigating the effects of l-GSH and CTA ( indicates halides) on site occupancy, reduction rate, and selective adsorption on crystal facets. Raman spectroscopic characterization using rhodamine 6G (R6G) as a reporter molecule revealed that nanoparticles with fewer branches, larger branch bases, and smoother surfaces exhibited excellent SERS activity, with an analytical enhancement factor (AEF) of 5.
View Article and Find Full Text PDFOrg Lett
September 2025
College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, P. R. China.
Four novel coumarin-containing arenes bearing a [5]/[6]helicene unit (, , , and ) have been readily synthesized and structurally verified by X-ray crystallographic analysis. The chiral resolution of molecules , , and has enabled a detailed investigation of their chiroptical properties and the kinetics of enantiomerization, manifesting that the [6]helicenes and exhibit a more enhanced chiroptical response compared to [5]helicene .
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
International Joint Research Centre for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
Deuterated compounds possess significant research value. As interest in chiral deuterated compounds intensifies, various deuteration methods are garnering increased attention. This article primarily reviews the asymmetric deuterium synthesis methods reported in recent years, focusing on the following strategies: one-step reductive deuteration, the series reaction of H/D exchange and asymmetric allylation, the [3+2] asymmetric cycloaddition of 1,3-dipoles and alkenes, asymmetric deuteration photocatalysis, asymmetric deuteration using organic catalysis, and asymmetric deuteration of chiral amino acids and their derivatives through biocatalysis.
View Article and Find Full Text PDF