Chemical Composition of Secondary Organic Aerosol Formed from the Oxidation of Semivolatile Isoprene Epoxydiol Isomerization Products.

Environ Sci Technol

Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

3-Methylenebutane-1,2,4-triol and 3-methyltetrahydrofuran-2,4-diols, previously designated "C-alkene triols", were recently confirmed as in-particle isomerization products of isoprene-derived β-IEPOX isomers that are formed upon acid-driven uptake and partition back into the gas phase. In chamber experiments, we have systematically explored their gas phase oxidation by hydroxyl radical (OH) as a potential source of secondary organic aerosol (SOA). OH-initiated oxidation of both compounds in the presence of ammonium bisulfate aerosol resulted in substantial aerosol volume growth. Compositions of low-volatility products in both the gas and particulate phases were established by high-resolution mass spectrometry measurements. Under conditions mimicking the Southeast USA (50% relative humidity, bulk seed aerosol pH 1.4), we estimate the SOA yield from OH-initiated oxidation of 3-methylenebutane-1,2,4-triol to be 93.1%, equating to 1.95 ± 0.81 Tg C Yr, and from 3-methyltetrahydrofuran-2,4-diol oxidation to be 26.7%, equating to 1.76 ± 1.26 Tg C Yr. Previously unreported isoprene-derived oxidation products, 2,3-dihydroxy-2-(hydroxymethyl)propanal, 1,3,4-trihydroxybutan-2-one, and four organosulfates have been confirmed in ambient SOA, and aid in understanding isoprene oxidation pathways in HO dominated environments as NO levels continue to decline in the US. This work underlines the need for inclusion of partitioning of in-particle formed semivolatile products and their atmospheric oxidation pathways in atmospheric models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11891914PMC
http://dx.doi.org/10.1021/acs.est.4c06850DOI Listing

Publication Analysis

Top Keywords

secondary organic
8
organic aerosol
8
oxidation
8
isomerization products
8
gas phase
8
oh-initiated oxidation
8
oxidation pathways
8
aerosol
5
products
5
chemical composition
4

Similar Publications

We report the synthesis of three nickel complexes based on Ni(NHC)[P(OR)](Ar)Cl and their application in C()-N cross-coupling reactions. Reactions involving secondary amines proceeded at room temperature, while anilines and primary alkyl amines coupled under mild heating. The reported complexes are air-stable as solids, operate at low catalytic loading, and do not require an exogenous ligand.

View Article and Find Full Text PDF

Asymmetric Mannich reaction enabled synthesis of alkaloids.

Mol Divers

September 2025

Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.

The catalytic asymmetric Mannich reaction is a multicomponent reaction which affords β-amino carbonyl compounds by utilizing an aldehyde, a primary or secondary amine/ammonia, and a ketone. β-amino carbonyl scaffolds are crucial intermediates for the synthesis of naturally occurring bioactive compounds and their derivatives. The synthesized natural compounds exhibit a broad spectrum of biological activities including anti-fungal, anti-cancer, anti-bacterial, anti-HIV, anti-oxidant, and anti-inflammatory activities.

View Article and Find Full Text PDF

Ligand-Enabled Cu-Catalyzed Deoxyalkynylation of α-Unfunctionalized Alcohols with Terminal Alkynes.

Angew Chem Int Ed Engl

September 2025

Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, and Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, 518055, China.

Despite the widespread utility of transition metal-catalyzed cross-couplings in organic synthesis, the coupling of unactivated alkyl electrophiles remains challenging due to sluggish oxidative addition and competing side reactions. Here, we describe a general and practical copper-catalyzed radical deoxyalkynylation of α-unfunctionalized alcohols through a synergistic combination of Barton-McCombie deoxygenation and copper-catalyzed radical cross-coupling. Key to the success of this method lies in not only the development of rigid anionic multiple N,N,N-ligand to exert remarkable selectivity of highly reactive unactivated alkyl radicals, but also the selection of one suitable oxidant to suppress Glaser homocoupling and other side products.

View Article and Find Full Text PDF

Investigation of the fundamental microscopic processes occurring in organic reactions is essential for optimising both organocatalysts and synthetic strategies. In this study, single-molecule fluorescence microscopy was employed to study the Diels-Alder reaction catalysed by a first-generation MacMillan catalyst, providing direct insights into its kinetic dynamics. This reaction proceeds via a series of reversible processes under equilibrium conditions (S ⇄ IM ⇄ IM → P, IM and IM: N,O-acetal and iminium ion intermediates, respectively).

View Article and Find Full Text PDF

Exploring lactic acid bacteria diversity of hop plant by-products to develop a multi-strain starter culture to be used in hop-supplemented sourdough bread.

Food Res Int

November 2025

Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze, 43124 Parma, Italy; Institute of Biophysics, National Research Council (CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy.

The hop plant is gaining interest in the food, pharmaceutical, and cosmetics industries due to its abundance of secondary metabolites. However, branches and leaves, despite their antioxidant potential, are typically discarded. To valorize these components as functional ingredients they were dried, milled into hop powder (HP), and used to enrich bread.

View Article and Find Full Text PDF