Neuroligin 1 Regulates Autistic-Like Repetitive Behavior through Modulating the Activity of Striatal D2 Receptor-Expressing Medium Spiny Neurons.

Adv Sci (Weinh)

The Key Laboratory of Developmental Genes and Human Disease, The School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing, 210096, China.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Restricted and repetitive behavior (RRB) is a primary symptom of autism spectrum disorder (ASD), which poses a significant risk to individuals' health and is becoming increasingly prevalent. However, the specific cellular and neural circuit mechanisms underlying the generation of RRB remain unclear. In this study, it is reported that the absence of the ASD-related protein Neuroligin 1 (NLGN1) in dopamine receptor D2-expressing medium spiny neurons (D2-MSNs) in the dorsal striatum is associated with the duration and frequency of self-grooming and digging behaviors. The Nlgn1-deficient D2-MSNs are hyperactivated, which correlates with excessive self-grooming and digging behaviors. Inhibiting the activity of D2-MSNs reduces the duration and frequency of these RRBs. Furthermore, it is demonstrated that the generation of self-grooming and digging behaviors depends on distinct patterns of D2-MSN activity. Finally, through single-nucleus RNA sequencing (sn-RNAseq) and protein detection verification, it is revealed that the overactivation of protein kinase C (PKC) in Nlgn1-deficient mice contributes to excessive repetitive behaviors and increased neuronal excitability. In this study, potential mechanisms are proposed for the generation of self-grooming and digging behaviors, as well as suggest possible treatments and interventions ASD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792054PMC
http://dx.doi.org/10.1002/advs.202410728DOI Listing

Publication Analysis

Top Keywords

self-grooming digging
16
digging behaviors
16
repetitive behavior
8
medium spiny
8
spiny neurons
8
duration frequency
8
generation self-grooming
8
behaviors
5
neuroligin regulates
4
regulates autistic-like
4

Similar Publications

Neuroligin 1 Regulates Autistic-Like Repetitive Behavior through Modulating the Activity of Striatal D2 Receptor-Expressing Medium Spiny Neurons.

Adv Sci (Weinh)

February 2025

The Key Laboratory of Developmental Genes and Human Disease, The School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing, 210096, China.

Restricted and repetitive behavior (RRB) is a primary symptom of autism spectrum disorder (ASD), which poses a significant risk to individuals' health and is becoming increasingly prevalent. However, the specific cellular and neural circuit mechanisms underlying the generation of RRB remain unclear. In this study, it is reported that the absence of the ASD-related protein Neuroligin 1 (NLGN1) in dopamine receptor D2-expressing medium spiny neurons (D2-MSNs) in the dorsal striatum is associated with the duration and frequency of self-grooming and digging behaviors.

View Article and Find Full Text PDF

Egg-laying mammals (monotremes) are considered "primitive" due to traits such as oviparity, cloaca, and incomplete homeothermy, all of which they share with reptiles. Two groups of monotremes, the terrestrial echidna (Tachyglossidae) and semiaquatic platypus (Ornithorhynchidae), have evolved highly divergent characters since their emergence in the Cenozoic era. These evolutionary differences, notably including distinct electrosensory and chemosensory systems, result from adaptations to species-specific habitat conditions.

View Article and Find Full Text PDF

The neural cell adhesion molecule 2 (NCAM2) regulates axonal organization in the central nervous system via mechanisms that have remained poorly understood. We now show that NCAM2 increases axonal levels of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), a protease that regulates axonal guidance. In brains of NCAM2-deficient mice, BACE1 levels are reduced in hippocampal mossy fiber projections, and the infrapyramidal bundle of these projections is shortened.

View Article and Find Full Text PDF

The BTBR T Itpr3/J (BTBR) mouse displays elevated repetitive motor behaviors. Treatment with the partial M muscarinic receptor agonist, CDD-0102A, attenuates stereotyped motor behaviors in BTBR mice. The present experiment investigated whether CDD-0102A modifies changes in striatal glutamate concentrations during stereotyped motor behavior in BTBR and B6 mice.

View Article and Find Full Text PDF

Background: Autism spectrum disorders (ASD) are a set of neurodevelopmental disorders marked by a lack of social interaction, restrictive interests, and repetitive behaviors. There is a paucity of pharmacological treatments to reduce core ASD symptoms. Various lines of evidence indicate that reduced brain muscarinic cholinergic receptor activity may contribute to an ASD phenotype.

View Article and Find Full Text PDF