Spatiotemporal characterization of water diffusion anomalies in saline solutions using machine learning force field.

Sci Adv

School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Understanding water behavior in salt solutions remains a notable challenge in computational chemistry. Conventional force fields have shown limitations in accurately representing water's properties across different salt types (chaotropes and kosmotropes) and concentrations, demonstrating the need for better methods. Machine learning force field applications in computational chemistry, especially through deep potential molecular dynamics (DPMD), offer a promising alternative that closely aligns with the accuracy of first-principles methods. Our research used DPMD to study how salts affect water by comparing its results with ab initio molecular dynamics, SPC/Fw, AMOEBA, and MB-Pol models. We studied water's behavior in salt solutions by examining its spatiotemporally correlated movement. Our findings showed that each model's accuracy in depicting water's behavior in salt solutions is strongly connected to spatiotemporal correlation. This study demonstrates both DPMD's advanced abilities in studying water-salt interactions and contributes to our understanding of the basic mechanisms that control these interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633738PMC
http://dx.doi.org/10.1126/sciadv.adp9662DOI Listing

Publication Analysis

Top Keywords

behavior salt
12
salt solutions
12
machine learning
8
learning force
8
force field
8
computational chemistry
8
molecular dynamics
8
water's behavior
8
spatiotemporal characterization
4
characterization water
4

Similar Publications

Although glutamatergic and GABAergic synapses are important in seizure generation, the contribution of non-synaptic ionic and electrical mechanisms to synchronization of seizure-prone hippocampal neurons remains unclear. Here, we developed a physiologically relevant model to study these mechanisms by inducing prolonged seizure-like discharges (SLDs) in hippocampal slices from male rats through modest, sustained ionic manipulations. Specifically, we reduced extracellular calcium to 0.

View Article and Find Full Text PDF

Impaired muscle regrowth in aging is underpinned by reduced pro-inflammatory macrophage function and subsequently impaired muscle cellular remodeling. Macrophage phenotype is metabolically controlled through TCA intermediate accumulation and activation of HIF1A. We hypothesized that transient hypoxia following disuse in old mice would enhance macrophage metabolic inflammatory function thereby improving muscle cellular remodeling and recovery.

View Article and Find Full Text PDF

Background MRI-derived arrhythmogenic substrate, including late gadolinium enhancement (LGE) and extracellular volume fraction (ECV), is indicative of sudden cardiac death (SCD) risk in nonischemic dilated cardiomyopathy (DCM). The relative prognostic value of LGE and ECV remains unclear. Purpose To evaluate the performance of LGE and T1 mapping in predicting SCD in patients with DCM and to explore clinical implementation.

View Article and Find Full Text PDF

Ionic conductivity mechanisms in PEO-NaPF electrolytes.

Nanoscale

September 2025

Polymer Electrolytes and Materials Group (PEMG), Department of Physics, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342030, India.

Understanding ion transport mechanisms in sodium ion-based polymer electrolytes is critical, considering the emergence of sodium ion electrolyte technologies as sustainable alternatives to lithium-based systems. In this paper, we employ all-atom molecular dynamics simulations to investigate the salt concentration () effects on ionic conductivity () mechanisms in sodium hexafluorophosphate (NaPF) in polyethylene oxide (PEO) electrolytes. Sodium ions exhibit ion solvation shell characteristics comparable to those of lithium-based polymer electrolytes, with similar anion coordination but more populated oxygen coordination in the polymer matrix.

View Article and Find Full Text PDF

The CHARMS study: rationale and study protocol for an observational study of sleep and biobehavioral rhythms in older adult couples.

Sleep Adv

August 2025

Division of Public Health, Department of Family and Preventive Medicine, University of Utah, 303 Chipeta Way, Salt Lake City, UT 84013, United States of America.

Individuals with mild cognitive impairment (MCI) demonstrate cognitive decline without major functional impairment and are at increased risk for developing Alzheimer's disease and related dementias (ADRD). Sleep and biobehavioral rhythm disturbances (disruptions in 24-h oscillations in physiology and behavior, including rest-activity patterns and mealtimes) are more than twice as common among patients with MCI than cognitively intact older adults. Importantly, the consequences of sleep and biobehavioral rhythm disruption in MCI extend beyond the patient, also profoundly affecting the spouse/partner.

View Article and Find Full Text PDF