98%
921
2 minutes
20
Background/aims: Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods: The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results: MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusion: In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12016653 | PMC |
http://dx.doi.org/10.3350/cmh.2024.0657 | DOI Listing |
Int J Biochem Cell Biol
September 2025
Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China. Electronic address:
Silicosis is a fatal occupational lung disease characterized by persistent inflammation and irreversible fibrosis. However, the pathogenesis of silicosis is currently unclear. In this study, a mouse model of silicosis was established by intranasal instillation of silica, and transcriptomic alterations in lung tissues were assessed by mRNA-sequencing.
View Article and Find Full Text PDFCryobiology
September 2025
Laboratory of Teaching and Research in Pathology of Reproduction, Center of Biotechnology in Animal Reproduction, Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Pirassununga, SP, Brazil. Electronic address:
Sperm capacitation is a critical process for successful fertilization, involving multiple regulated cellular changes. On the other hand, cryopreservation induces membrane changes that can mimic capacitation, potentially leading to misinterpretation of sperm function. Distinguishing true capacitation from cryoinjury remains challenging, as both share surface markers despite involving distinct mechanisms and impacts on fertilization.
View Article and Find Full Text PDFNat Immunol
September 2025
Department of Microbiology, University of Chicago, Chicago, IL, USA.
Cholesterol-dependent cytolysins (CDCs) constitute the largest group of pore-forming toxins and serve as critical virulence factors for diverse pathogenic bacteria. Several CDCs are known to activate the NLRP3 inflammasome, although the mechanisms are unclear. Here we discovered that multiple CDCs, which we referred to as type A CDCs, were internalized and translocated to the trans-Golgi network (TGN) to remodel it into a platform for NLRP3 activation through a unique peeling membrane mechanism.
View Article and Find Full Text PDFInt J Mol Med
November 2025
School of Medical Technology, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China.
Atherosclerosis is a chronic and progressive vascular disease involving the gradual accumulation of lipids, cholesterol, cellular debris, and fibrous elements within the arterial wall. This process leads to the thickening and hardening of arteries, resulting in restricted blood flow and reduced oxygen delivery to tissues. Over time, these pathological changes significantly elevate the risk of life‑threatening cardiovascular events, including myocardial infarction and ischemic stroke.
View Article and Find Full Text PDFbioRxiv
August 2025
Instituto de Investigaciones Biológicas (IIB-FCEyN/CONICET), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata, Argentina.
Sperm capacitation involves proteolytic remodeling of membrane proteins, including components of the CatSper calcium channel, which is essential for hyperactivation and male fertility. Here, we identify the seminal protease inhibitor SPINK3, a known decapacitation factor that suppresses premature capacitation in the female tract, as the first physiological inhibitor of CATSPER1 processing. In mouse sperm, SPINK3 blocks capacitation-induced CATSPER1 cleavage, preserving a subpopulation with intact CatSper channels and lacking pTyr development in the flagellum.
View Article and Find Full Text PDF