98%
921
2 minutes
20
Multiple myeloma (MM) is a cancer of plasma cells caused by abnormal gene expression and interactions within the bone marrow (BM) niche. The BM environment significantly influences the progression of MM. Celastrol, a natural compound derived from traditional Chinese medicine, exhibits significant anticancer effects. This study aimed to identify specific targets of celastrol and develop more effective and less toxic treatment options for MM. Celastrol is used as a probe to determine its specific target, pyridoxine-5'-phosphate oxidase (PNPO). Increased levels of PNPO are associated with poor outcomes in MM patients, and PNPO promotes MM cell proliferation and induces osteoclast differentiation through exosomes. Mechanistically, PNPO oxidizes disheveled 3 (DVL3), leading to abnormal activation of the Wnt/β-catenin pathway. Based on the critical sites of PNPO, Eltrombopag is identified as a potential therapeutic candidate for MM. In addition, the experiments showed its efficacy in mouse models. Eltrombopag inhibited the growth of MM cells and reduced bone lesions by disrupting the interaction between PNPO and DVL3, as supported by preliminary clinical trials. The study highlights the importance of PNPO as a high-risk gene in the development of MM and suggests that Eltrombopag may be a promising treatment option.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792023 | PMC |
http://dx.doi.org/10.1002/advs.202407681 | DOI Listing |
Blood Cell Ther
August 2025
Department of Clinical Hematology and Medical Oncology, Postgraduate Institute Of Medical Education And Research (PGIMER), Chandigarh, India.
Background: Bone marrow (BM) Measurable Residual Disease (MRD) assessments underestimate disease burden in multiple myeloma, as focal lesions can exist outside the marrow. Functional imaging, like positron emission tomography-computed tomography (PET-CT), offers valuable insights into residual disease beyond the marrow. Combining marrow flow cytometry (FCM) with PET-CT for a composite MRD (cMRD) assessment before and after autologous stem cell transplant (ASCT) is expected to provide prognostic information, particularly in settings where patients receive extended duration of anti-myeloma therapy prior to ASCT.
View Article and Find Full Text PDFItal J Dermatol Venerol
August 2025
Section of Dermatology Pistoia-Prato, USL Toscana Centro-Prato Hospital, Prato, Italy.
Am J Hematol
September 2025
Australian Centre for Blood Diseases Monash University, Melbourne, Australia.
Multiple myeloma (MM) is an incurable blood cancer characterized by clonal bone marrow plasmacytosis, hypercalcemia, renal failure, anemia, and osteolytic bone disease. Approximately 20% of NDMM patients, not predicted to have high-risk disease at diagnosis, progress early, despite optimal induction +/- ASCT and lenalidomide maintenance, and are subsequently categorized as functional high-risk (FHR) disease. Standardized risk-stratification models incorporate biomarkers of tumor burden, existence of high-risk cytogenetics, with the presence/absence of plasma cell leukemia/extramedullary disease to attribute high-risk at diagnosis; however, depth/duration of response to novel agent-based induction (NA-IND) as dynamic markers of disease risk have not been defined.
View Article and Find Full Text PDFExp Clin Transplant
August 2025
>From the University Clinic for Nephrology, Faculty of Medicine, Saints Cyril and Methodius University in Skopje, Skopje, North Macedonia.
Posttransplant lymphoproliferative disorders are a serious complication after solid-organ transplant, with a reported incidence from 2% to 20%. Plasma cell neoplasms in solid-organ transplants represent a rare but increasingly serious complication after solid-organ transplant. We report a case of plasmablastic myeloma, a very rare variant of multiple myeloma with aggressive course and poor prognosis.
View Article and Find Full Text PDFNeurol Sci
September 2025
Department of Neurosurgery, The 940, Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, No.333 Nanbinhe Road, Qilihe District, Lanzhou City, Gansu Province, China.