Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In this study, we explore the cartilage defect repair mechanism by phosphocreatine-grafted chitosan hydrogels loaded with berberine-treated ATDC5 cells (CSMP@BBR@ATDC5). Under the optimal concentrations of LPS and BBR ideal conditions, ATDC5 cell toxicity and proliferation were detected with AM/PI and EdU staining. Additionally, qPCR and Western blot were employed to detect the expression of the SIRT1/BMP4 signaling pathway and chondrogenic-related factors in ATDC5 cells. Moreover, BBR-treated ATDC5 was seeded into a phosphocreatine-grafted chitosan hydrogel system. Subsequently, the cartilage defect was established in mice. After 4, 8, and 12 weeks, knee specimens were collected to evaluate the repair of cartilage defects. According to our findings, BBR can increase ATDC5 viability by LPS treatment. Likewise, it upregulates the SIRT1/BMP4 signaling pathway expression and chondrogenic-related factors. Another, it was shown by histological observation that the cartilage defect had been repaired more effectively in the CSMP@BBR@ATDC5 group than in the other groups. Finally, the expressions of chondrogenic-related factors and SIRT1/BMP4 signaling pathway were upregulates in CSMP@BBR@ATDC5 than in other groups. BBR protects inflammatory ATDC5 cells and maintains the expression of chondrogenic-related factors. Subsequently, we successfully use CSMP@BBR@ATDC 5 to repair knee cartilage defects in mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsbiomaterials.4c01645 | DOI Listing |