Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: In medical imaging, 3D visualization is vital for displaying volumetric organs, enhancing diagnosis and analysis. Multiplanar reconstruction (MPR) improves visual and diagnostic capabilities by transforming 2D images from computed tomography (CT) and magnetic resonance imaging into 3D representations. Web-based Digital Imaging and Communications in Medicine (DICOM) viewers integrated into picture archiving and communication systems facilitate access to pictures and interaction with remote data. However, the adoption of progressive web applications (PWAs) for web-based DICOM and MPR visualization remains limited. This paper addresses this gap by leveraging PWAs for their offline access and enhanced performance.

Objective: This study aims to evaluate the integration of DICOM and MPR visualization into the web using PWAs, addressing challenges related to cross-platform compatibility, integration capabilities, and high-resolution image reconstruction for medical image visualization.

Methods: Our paper introduces a PWA that uses a modular design for enhancing DICOM and MPR visualization in web-based medical imaging. By integrating React.js and Cornerstone.js, the application offers seamless DICOM image processing, ensures cross-browser compatibility, and delivers a responsive user experience across multiple devices. It uses advanced interpolation techniques to make volume reconstructions more accurate. This makes MPR analysis and visualization better in a web environment, thus promising a substantial advance in medical imaging analysis.

Results: In our approach, the performance of DICOM- and MPR-based PWAs for medical image visualization and reconstruction was evaluated through comprehensive experiments. The application excelled in terms of loading time and volume reconstruction, particularly in Google Chrome, whereas Firefox showed superior performance in viewing slices. This study uses a dataset comprising 22 CT scans of peripheral artery patients to demonstrate the application's robust performance, with Google Chrome outperforming other browsers in both the local area network and wide area network settings. In addition, the application's accuracy in MPR reconstructions was validated with an error margin of <0.05 mm and outperformed the state-of-the-art methods by 84% to 98% in loading and volume rendering time.

Conclusions: This paper highlights advancements in DICOM and MPR visualization using PWAs, addressing the gaps in web-based medical imaging. By exploiting PWA features such as offline access and improved performance, we have significantly advanced medical imaging technology, focusing on cross-platform compatibility, integration efficiency, and speed. Our application outperforms existing platforms for handling complex MPR analyses and accurate analysis of medical imaging as validated through peripheral artery CT imaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667143PMC
http://dx.doi.org/10.2196/63834DOI Listing

Publication Analysis

Top Keywords

medical imaging
16
dicom mpr
12
mpr visualization
12
progressive web
8
web applications
8
imaging visualization
8
digital imaging
8
imaging communications
8
communications medicine
8
multiplanar reconstruction
8

Similar Publications

In the visual cortices, receptive fields (RFs) are arranged in a gradient from small sizes in the center of the visual field to the largest sizes at the periphery. Using functional magnetic resonance imaging (fMRI) mapping of population RFs, we investigated RF adaptation in V1, V2, and V3 in patients after long-term photoreceptor degeneration affecting the central (Stargardt disease [STGD]) and peripheral (Retinitis Pigmentosa [RP]) regions of the retina. In controls, we temporarily limited the visual field to the central 10° to model peripheral loss.

View Article and Find Full Text PDF

Retinal ganglion cells (RGCs) are highly compartmentalized neurons whose long axons serve as the sole connection between the eye and the brain. In both injury and disease, RGC degeneration occurs in a similarly compartmentalized manner, with distinct molecular and cellular responses in the axonal and somatodendritic regions. The goal of this study was to establish a microfluidic-based platform to investigate RGC compartmentalization in both health and disease states.

View Article and Find Full Text PDF

Programmable self-assembly has recently enabled the creation of complex structures through precise control of the interparticle interactions and the particle geometries. Targeting ever more structurally complex, dynamic, and functional assemblies necessitates going beyond the design of the structure itself, to the measurement and control of the local flexibility of the intersubunit connections and its impact on the collective mechanics of the entire assembly. In this study, we demonstrate a method to infer the mechanical properties of multisubunit assemblies using cryogenic electron microscopy (cryo-EM) and RELION's multi-body refinement.

View Article and Find Full Text PDF

Background: Lateral malleolar avulsion fracture (LMAF) and subfibular ossicle (SFO) are distinct entities that both present as small bone fragments near the lateral malleolus on imaging, yet require different treatment strategies. Clinical and radiological differentiation is challenging, which can impede timely and precise management. On imaging, magnetic resonance imaging (MRI) is the diagnostic gold standard for differentiating LMAF from SFO, whereas radiological differentiation on computed tomography (CT) alone is challenging in routine practice.

View Article and Find Full Text PDF

Importance: It is unclear whether the duration of amyloid-β (Aβ) pathology is associated with neurodegeneration and whether this depends on the presence of tau.

Objective: To examine the association of longitudinal atrophy with Aβ positron emission tomography (PET)-positivity (Aβ+) and the estimated duration of Aβ+ (Aβ+ duration), controlling for tau-positivity.

Design, Setting, And Participants: Data for this longitudinal cohort study were drawn from the Wisconsin Registry for Alzheimer Prevention and the Wisconsin Alzheimer Disease Research Center Clinical Core Study.

View Article and Find Full Text PDF