98%
921
2 minutes
20
The aim of this study was to develop a small-scale model system resembling the micro- and meso-structure of butter, namely having a water droplet size distribution and water content close to that of commercially produced butter. Although it is possible to churn cream on a small scale, matching the microstructure of butter is a challenge. A 2-step churning process was introduced with the application of a kitchen mixer. The resulting microstructure was evaluated using confocal laser scanning microscopy. In addition, low-field nuclear magnetic resonance was used to determine the water droplet size distribution. Results demonstrated that a water content of 16% to 19% could be obtained with the proposed procedure, close to the standard water content of 16%. Average water droplet size ranged between 2.5 to 4.3 µm and did not depend on batch-to-batch variations, nor storage-induced differences in the cream. In conclusion, the proposed method could be employed to prepare water-in-oil emulsions with a microstructure similar to that of butter and opens new opportunities for studying microbial growth, flavor release, and texture formation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11624382 | PMC |
http://dx.doi.org/10.3168/jdsc.2024-0571 | DOI Listing |
We report a rare case in which the inflation lumen at the tip of an endotracheal tube (ETT) was open, leading to intraoperative air leakage and cuff deflation. A patient with Down syndrome undergoing planned dental treatment under general anesthesia was induced and nasally intubated with a cuffed ETT that was then inflated with 5 mL of air. Soon thereafter, it was noted that the pilot balloon was deflated and filled with water droplets.
View Article and Find Full Text PDFLangmuir
September 2025
CIPR, KFUPM, Dhahran 31261, Saudi Arabia.
Emulsion formation presents a significant operational challenge in oil production, necessitating the continuous development of novel and effective demulsification methods. However, the lack of a fundamental understanding of the mechanisms that regulate the formation of these emulsions significantly complicates this process. In this study, we systematically investigated the influence of Ca ions on crude oil emulsions.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Recently, the atmospheric aerosol surface, which is reported to be quite acidic, is recognized as an important microreactive medium for atmospheric chemistry, profoundly impacting air quality and global climate. Nevertheless, the molecular-level understanding of the effect of surface-bound acids on atmospheric chemical reactions remains limited. Herein, the reactions between CO and NH/amines at the air-water interface with organic acids are investigated using combined molecular dynamic simulations and quantum chemical calculations.
View Article and Find Full Text PDFLangmuir
September 2025
Process Engineering in Life Science Engineering, HTW Berlin, Wilhelminenhofstraße 75 A, 12459 Berlin, Germany.
Pickering emulsions (PEs), where water-in-oil (w/o) droplets are stabilized by nanoparticles (NPs), offer a promising platform for biocatalysis by providing a large interfacial area crucial for efficient substrate conversion. While several lipase catalyzed reactions in PEs have been demonstrated, the exact interfacial structure is unknown. This study focuses on the interfacial network formed by NPs and lipase (CRL) at the octanol/water-interface by varying pH and NP charge.
View Article and Find Full Text PDFFood Chem
September 2025
Nantong Food and Drug Supervision and Inspection Center, Nantong 226001, PR China.
Different starch crystal structures significantly influence meat product quality, though their specific impacts on myofibrillar protein (MP) functionality remain unclear despite industry demand for optimized ingredients. This study compared how potato, corn, mung bean, and pea starches affect MP properties in minced pork. Our findings reveal that starch-protein interactions fundamentally regulate MP gel and emulsion properties through the following mechanisms: First, starch promotes protein aggregation by enhancing hydrophobic interactions and disulfide bond formation, affecting gel network crosslinking.
View Article and Find Full Text PDF