Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

N-acetyltransferase 10 (NAT10), an enzyme responsible for ac4C acetylation, is implicated in cancer progression, though its specific biological function in prostate cancer remains insufficiently understood. This study clarifies NAT10's role in prostate cancer and its effects on the tumor immune microenvironment. NAT10 expression and clinical relevance were assessed through bioinformatics, RT-qPCR, and IHC analyses, comparing prostate cancer tissues with normal controls. The impact of NAT10 on tumor cell proliferation, migration, and invasion was investigated via in vitro assays-including CCK-8, EdU, wound healing, and 3D-Transwell-as well as in vivo mouse xenograft models and organoid studies. Further, NAT10's influence on immune cell infiltration was examined using flow cytometry, IHC, cell co-culture assays, and ELISA to elucidate downstream chemokine effects, specifically targeting CD8 T cells. Findings indicated significant upregulation of NAT10 in prostate cancer cells, enhancing their proliferative and invasive capacities. Notably, NAT10 suppresses CD8 T cell recruitment and cytotoxicity through the CCL25/CCR9 axis, fostering an immunosuppressive microenvironment that exacerbates tumor progression. An ac4C modification score was also devised based on NAT10's downstream targets, providing a novel predictive tool for evaluating immune infiltration and forecasting immunotherapy responses in patients with prostate cancer. This study underscores NAT10's pivotal role in modulating the prostate cancer immune microenvironment, offering insights into the immune desert phenomenon and identifying NAT10 as a promising therapeutic target for improving immunotherapy efficacy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11625704PMC
http://dx.doi.org/10.1186/s43556-024-00228-5DOI Listing

Publication Analysis

Top Keywords

prostate cancer
28
immunosuppressive microenvironment
8
cd8 cell
8
cancer
8
immune microenvironment
8
prostate
7
cell
5
immune
5
nat10
5
acetyltransferase nat10
4

Similar Publications

This review aims to describe the role of poly-ADP-ribose polymerase inhibitors (PARPi) in the treatment of metastatic castration-resistant prostate cancer (mCRPC), an aggressive and lethal form of the disease. The introduction of PARPi has led to improved prognosis, particularly in patients with at least one somatic or germline mutation in DNA damage repair genes such as BRCA1 or BRCA2. Several recent studies have shown that PARPi, used alone or in combination with abiraterone or enzalutamide, improve progression-free survival and overall survival in patients with mCRPC.

View Article and Find Full Text PDF

This narrative review analyzes current evidence comparing single-session and two-session approaches in Stereotactic Body Radiation Therapy (SBRT) and high-dose-rate (HDR) brachytherapy for localized prostate cancer. These ultra-hypofractionated strategies deliver high-precision ablative doses while minimizing exposure to normal tissues. SBRT regimens with fewer than five fractions show tumor control comparable to conventional treatments, offering reduced treatment burden and increased convenience.

View Article and Find Full Text PDF

Purpose: Screening and diagnosing ISUP ≥ 2 prostate cancer is challenging. This study aimed to determine whether canine detection could be beneficial addition to the ISUP ≥ 2 prostate cancer diagnostic protocol by creating a decision-making algorithm for men with suspected prostate cancer.

Methods: We conducted a prospective study at two urology institutions and a French veterinary school, including men with a suspicion of prostate cancer from November to April 2023, which were divided into two groups according to their prostate biopsy results.

View Article and Find Full Text PDF

Background: The optimal management of synchronous rectal cancer (RC) and prostate cancer (PC) remains unclear. This systematic review evaluates treatment strategies and reports postoperative, oncological, and quality-of-life outcomes in patients treated with curative intent.

Methods: Following PRISMA guidelines, this systematic review was registered in PROSPERO (CRD42024598049).

View Article and Find Full Text PDF

Neural activity is increasingly recognized as a crucial regulator of cancer growth. In the brain, neuronal activity robustly influences glioma growth through paracrine mechanisms and by electrochemical integration of malignant cells into neural circuitry via neuron-to-glioma synapses. Outside of the central nervous system, innervation of tumours such as prostate, head and neck, breast, pancreatic, and gastrointestinal cancers by peripheral nerves similarly regulates cancer progression.

View Article and Find Full Text PDF