98%
921
2 minutes
20
Global warming is a major threat to reptiles because temperature strongly affects their development. High incubation temperatures reduce hatchling body size and physiological performance; however, its effects on brain development and learning abilities are less well understood. In particular, it remains unclear if the effects of elevated temperatures on learning are restricted to hatchlings or instead will persist later in life. To address this gap, we examined the effect of 'current' and 'future' (end-of-century, + 4 °C) incubation temperatures on hatchling and juvenile geckos Amalosia lesueurii, to test: (1) if elevated temperatures affect hatchling learning ability; (2) if the effects on learning persist in juvenile lizards, and (3) if and how elevated temperatures affect hatchling and juvenile brain anatomy and neuronal count. We found that fewer future-incubated hatchlings succeeded in the learning tasks. Nonetheless, the successful ones needed fewer trials to learn compared to current-incubated hatchlings, possibly due to a higher motivation. Reduced learning ability was still observed at the juvenile stage, but it did not differ between treatments due to a reduced cognitive performance of current-incubated juveniles. Future-incubated hatchlings had a smaller telencephalon, but this pattern was not found in juveniles. Neuron number and density in hatchlings or juveniles from both treatments were not different. Our results suggest that global warming will affect hatchling survival in the wild but it remains unclear if future-incubated lizards could compensate for the harmful effects of elevated temperatures. Further testing beyond the laboratory is required to understand whether phenotypic plasticity in lizards is sufficient to track global warming.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00360-024-01595-9 | DOI Listing |
Braz J Biol
September 2025
Universidade Estadual Paulista (Unesp), Instituto de Ciência e Tecnologia, Departamento de Engenharia Ambiental, São José dos Campos, SP, Brasil.
The present study carried out the first systematic review with meta-analysis on the effects of metals and temperature rise individually and their associations with terrestrial invertebrates. Initially, a systematic review of peer-reviewed articles was performed. Meta-analysis demonstrated that metals negatively affected the fitness of annelids, arthropods, and nematodes and positively affected physiological regulation in annelids.
View Article and Find Full Text PDFArq Bras Cardiol
September 2025
Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP - Brasil.
Targeted temperature management (TTM) is currently the only potentially neuroprotective intervention recommended for post-cardiac arrest care. However, there are concerns among the scientific community regarding conflicting evidence supporting this recommendation. Moreover, the bulk of trials included in systematic reviews that inform guidelines and recommendations have been conducted in developed countries, with case mix and patient characteristics that significantly differ from the reality of developing countries such as Brazil.
View Article and Find Full Text PDFACS Nano
September 2025
School of Physics and Key Lab of Quantum Materials and Devices of the Ministry of Education, Southeast University, Nanjing 211189, P. R. China.
While hexagonal boron nitride (hBN) hosts promising room-temperature quantum emitters for hybrid quantum photonic circuits, scalable deterministic integration and insufficient brightness alongside low photon collection and coupling efficiencies remain unresolved challenges. We present a femtosecond laser nanoengineering platform that enables the site-specific generation of hBN single-photon source (SPS) arrays. First-principles density functional theory (DFT) calculations and polarization-resolved spectroscopy confirm the atomic origin of emission as interfacial defects at hBN/SiO heterojunctions.
View Article and Find Full Text PDFFEMS Yeast Res
September 2025
Department of Bioengineering, School of Life Science Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran.
The growing challenges posed by global warming and the demand for sustainable food and feed resources underscore the need for robust microbial platforms in bioprocessing. Thermotolerant yeasts have emerged as promising candidates due to their ability to thrive at elevated temperatures and other industrially relevant stresses. This review examines the industrial potential of thermotolerant yeasts in the context of climate change, emphasizing how their resilience can lead to more energy-efficient and cost-effective bioprocesses.
View Article and Find Full Text PDFAdv Mater
September 2025
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
Van der Waals (vdW) layered materials have gained significant attention owing to their distinctive structure and unique properties. The weak interlayer bonding in vdW layered materials enables guest atom intercalation, allowing precise tuning of their physical and chemical properties. In this work, a ternary compound, NiInSe (x = 0-0.
View Article and Find Full Text PDF