Prevention of fenitrothion induced hepatic toxicity by saponarin via modulating TLR4/MYD88, JAK1/STAT3 and NF-κB signaling pathways.

Int J Biochem Cell Biol

Department of Pathology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia; Department of Forensic Medicine and Clinical Toxicology, Mansoura University, Egypt.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fenitrothion (FEN) is an organophosphate insecticidal agent that is considered as major source of organs toxicity. Saponarin (SAP) is a naturally occurring novel flavone that exhibits a wide range of medicinal properties. The current trial was conducted to evaluate the ameliorative potential of SAP against FEN instigated liver toxicity in rats. Thirty-two male albino rats were apportioned into four groups including control, FEN (10 mg/kg), FEN (10 mg/kg) + SAP (80 mg/kg), and SAP (80 mg/kg) alone treated group. It was revealed that FEN administration upregulated the gene expression of TNF-α, TLR4, IL-1β, MYD88, IL-6, TRAF6, COX-2, NF-κB, JAK1 and STAT3 while reducing the gene expression of IκB. Moreover, the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) were increased while the activities of catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), heme-oxygenase-1 (HO-1) and glutathione reductase (GSR) were decreased after FEN exposure. Furthermore, FEN administration notably escalated the levels of hepatic enzymes including alanine transaminase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT) and alkaline phosphatase (ALP) whereas reduced the levels of total proteins and albumin. Besides, FEN intake upregulated the levels of Caspase-9, Bax and Caspase-3 while reducing the levels of Bcl-2. Hepatic histology was impaired after FEN intoxication. Nonetheless, SAP treatment remarkably protected the normal state of liver via regulating abovementioned irregularities. Our in-silico analysis confirmed that SAP hold that potential to interact with binding pocket of these proteins, highlighting its ability as a therapeutic compound to alleviate FEN-induced liver damage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biocel.2024.106716DOI Listing

Publication Analysis

Top Keywords

fen
9
toxicity saponarin
8
fen 10 mg/kg
8
fen administration
8
gene expression
8
sap
5
levels
5
prevention fenitrothion
4
fenitrothion induced
4
induced hepatic
4

Similar Publications

Thermodynamic and Kinetic Effects in Spin Blocking of CO Coordination Reactions.

Inorg Chem

September 2025

Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States.

The iron(I) dinitrogen complex PhB(AdIm)FeN, which is supported by a very bulky 1-adamantyl-substituted tris(carbene)borate ligand, reacts with equimolar CO at low temperature to afford the high spin ( = 3/2) complex PhB(AdIm)Fe(CO). This monocarbonyl complex reacts with additional CO to afford the low spin ( = 1/2) dicarbonyl complex PhB(AdIm)Fe(CO). By contrast, the high spin iron(I) tris(pyrazolyl)borate complex TpFe(CO) does not react with additional CO.

View Article and Find Full Text PDF

Schiff bases containing sulfonyl units are important compounds because of their potential biological properties in the therapeutical field. In this study, three novel ligands (L1, L2, and L3) containing the sulfonyl groups, a derivative of Schiff base, were synthesized, and their molecular structures were characterized by FT-IR, H-NMR, C NMR, and elemental analysis results. The antiproliferative activities of these Schiff base ligands were evaluated against human colon cancer (HT-29 and Caco-2) and mouse fibroblast (L929) cells by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method.

View Article and Find Full Text PDF

Background: This paper presents the application of simulation to assess the functionality of a proposed Digital Twin (DT) architecture for immunisation services in primary healthcare centres. The solution is based on Industry 4.0 concepts and technologies, such as IoT, machine learning, and cloud computing, and adheres to the ISO 23247 standard.

View Article and Find Full Text PDF

Developing single-atom catalysts (SACs) with dense active sites and universal synthesis strategies remains a critical challenge. Herein, we present a scalable and universal strategy to synthesize high-density transition metal single-atom sites, anchored in nitrogen-doped porous carbon (M-SA@NC, M = Fe, Co, Ni) and investigate their oxygen reduction reaction (ORR) catalytic activity for flexible Zn-air batteries (ZABs). Using a facile coordination-pyrolysis strategy, atomically dispersed M-N sites with high metal loading are achieved.

View Article and Find Full Text PDF

Axial ligand engineering is a promising strategy to enhance the performance of single-atom catalysts (SACs) in electrocatalysis. However, a single non-metallic axial coordination atom linked to monolayer SACs (MSACs) often exhibits insufficient stability. In this work, we designed a series of bilayer SACs (BSACs) with vertically stacked FeN and MN (M = Sc-Zn) layers bridged by axial non-metallic atoms (C, N, O, P, S, and Se).

View Article and Find Full Text PDF