A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Multifunctional fructose-crosslinked fibroin film with a developed β-sheet structure for advanced food packaging. | LitMetric

Multifunctional fructose-crosslinked fibroin film with a developed β-sheet structure for advanced food packaging.

Int J Biol Macromol

Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea.

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The replacement of petroleum-based plastic packaging with sustainable biopolymer-based materials is still a significant challenge. In the current study, we present a novel approach to impart the multifunctionality of fibroin film through a facile fructose-mediated crosslinking process. By generating a synergistic effect by inducing the transition to β-sheet structure and introducing covalent bonds within the fibroin chain, we effectively controlled the physicochemical characteristics of fibroin film, resulting in exceptional mechanical properties surpassing previous fibroin-based films. The fructose-crosslinked fibroin films exhibited exceptional mechanical properties, including a toughness of 3767.73 kPa and a Young's modulus of 3.06 GPa, surpassing previously reported fibroin-based films. The films also demonstrated excellent optical properties, with 98.49 % transmittance at 700 nm. Moisture stability was significantly enhanced, as the incorporation of fructose reduced water solubility by increasing β-sheet crystallinity and improved bulk water retention through its hygroscopic properties. Additionally, Maillard reaction products formed during crosslinking provided superior ultraviolet shielding and enhanced antioxidant properties, making the films ideal for active food packaging. The multifunctionality of fructose-crosslinked fibroin film significantly improves food storage stability when used in sustainable and eco-friendly food packaging applications. This high-performance fructose-mediated crosslinked fibroin film with a developed β-sheet structure emerges as a promising alternative to petroleum-based materials, offering a sustainable solution for the advanced packaging field.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.138370DOI Listing

Publication Analysis

Top Keywords

fibroin film
20
fructose-crosslinked fibroin
12
β-sheet structure
12
food packaging
12
film developed
8
developed β-sheet
8
exceptional mechanical
8
mechanical properties
8
fibroin-based films
8
fibroin
7

Similar Publications