Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Remote epitaxy has garnered considerable attention as a promising method that facilitates the growth of thin films that replicate the crystallographic characteristics of a substrate by utilizing two-dimensional (2D) material interlayers such as graphene. The resulting film can be exfoliated to form a freestanding membrane and the substrate, if expensive, can be reused. However, atomically thin 2D materials are susceptible to damage before and during film growth in the chamber, leading to poor epitaxy. Oxide remote epitaxy using graphene, the most commonly available 2D material, is particularly challenging because the conventional conditions employed for the growth of epitaxial oxides also degrade graphene. In this study, we show for the first time that a direct correlation exists between the microstructure of graphene, the graphene becoming defective upon exposure to the pulsed laser deposition plume and the crystalline quality of the BaTiO (BTO) film deposited on top. A controlled aperture method was used to reduce graphene damage. Even so, the degree of damage is more at the graphene grain boundaries than within the grains. Graphene with a large grain size of >300 microns suffered less damage and yielded a film comparable to that grown directly on a SrTiO (STO) substrate with a rocking curve half width of 0.6°. Using large grain sized bi-layer graphene, 4 mm × 5 mm oxide layers were successfully exfoliated and transferred onto SiO-Si. These insights pave the way for the heterogeneous integration of functional oxides on foreign substrates, holding significant implications for commercializing perovskite oxides by integrating them with Si-CMOS and flexible electronics.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4nr03356fDOI Listing

Publication Analysis

Top Keywords

remote epitaxy
12
graphene
10
epitaxial oxides
8
large grain
8
free standing
4
standing epitaxial
4
oxides
4
oxides remote
4
epitaxy
4
epitaxy role
4

Similar Publications

Roles of Nanoscale Defects of Graphene in Remote Epitaxy of GaN.

Small

August 2025

School of Electrical Engineering and Computer Science, Department of Semiconductor Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.

Remote epitaxy through graphene enables the fabrication of freestanding membranes, facilitating the "peel-and-stack" process for semiconductor hetero-integration. While previous studies have emphasized graphene thickness, substrate bonding ionicity, and damage-free transfer of graphene for implementing remote epitaxy, the impact of nanoscale microscopic defects in graphene remains unexplored. Metal-organic chemical vapor deposition (MOCVD) of GaN requires high temperatures and a radical reaction environment, which can damage graphene.

View Article and Find Full Text PDF

Interface phenomena and emerging functionalities in ferroelectric oxide based heterostructures.

Chem Commun (Camb)

March 2025

Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE, 68588-0299, USA.

Capitalizing on the nonvolatile, nanoscale controllable polarization, ferroelectric perovskite oxides can be integrated with various functional materials for designing emergent phenomena enabled by charge, lattice, and polar symmetry mediated interfacial coupling, as well as for constructing novel energy-efficient electronics and nanophotonics with programmable functionalities. When prepared in thin film or membrane forms, the ferroelectric instability of these materials is highly susceptible to the interfacial electrostatic and mechanical boundary conditions, resulting in tunable polarization fields and Curie temperatures and domain formation. This review focuses on two types of ferroelectric oxide-based heterostructures: the epitaxial perovskite oxide heterostructures and the ferroelectric oxides interfaced with two-dimensional van der Waals materials.

View Article and Find Full Text PDF

Atomically thin van der Waals (vdW) films provide a material platform for the epitaxial growth of quantum heterostructures. However, unlike the remote epitaxial growth of three-dimensional bulk crystals, the growth of two-dimensional material heterostructures across atomic layers has been limited due to the weak vdW interaction. Here we report the double-sided epitaxy of vdW layered materials through atomic membranes.

View Article and Find Full Text PDF

Remote epitaxial crystalline perovskites for ultrahigh-resolution micro-LED displays.

Nat Nanotechnol

March 2025

Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.

The miniaturization of light-emitting diodes (LEDs) is pivotal in ultrahigh-resolution displays. Metal-halide perovskites promise efficient light emission, long-range carrier transport and scalable manufacturing for bright microscale LED (micro-LED) displays. However, thin-film perovskites with inhomogeneous spatial distribution of light emission and unstable surface under lithography are incompatible with the micro-LED devices.

View Article and Find Full Text PDF

Highly Thermal-Conductive Cubic Boron Arsenide: Single-Crystal Growth, Properties, and Future Thin-Film Epitaxy.

J Phys Chem Lett

January 2025

College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P.R. China.

Heat dissipation has become a critical challenge in modern electronics, driving the need for a revolution in thermal management strategies beyond traditional packaging materials, thermal interface materials, and heat sinks. Cubic boron arsenide (c-BAs) offers a promising solution, thanks to its combination of high thermal conductivity and high ambipolar mobility, making it highly suitable for applications in both electronic devices and thermal management. However, challenges remain, particularly in the large-scale synthesis of a high-quality material and the tuning of its physical properties.

View Article and Find Full Text PDF