Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Dielectric metasurfaces open new avenues in nonlinear optics through their remarkable capability of boosting frequency conversion efficiency of nonlinear optical interactions. Here, a metasurface consisting of a square array of cruciform-shaped silicon building blocks covered by a monolayer MoS is proposed. By designing the metasurface so that it supports optical bound states in the continuum (BICs) at the fundamental frequency and second harmonic, nearly 600× enhancement of the second-harmonic generation (SHG) in the MoS monolayer as compared to that of the same MoS monolayer suspended in air is achieved. To gain deeper insights into the physics of the metasurface-induced enhancement of nonlinear optical interactions, an eigenmode expansion method is employed to analytically investigate the main characteristics of SHG and the results show a good agreement with the results obtained full-wave numerical simulations. In addition, a versatile nonlinear homogenization approach is used to highlight and understand the interplay between the BICs of the metasurface and the efficiency of the SHG process. This work suggests a promising method to enhance the nonlinear optical processes in two-dimensional materials, enabling the development of advanced photonic nanodevices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11501448PMC
http://dx.doi.org/10.1515/nanoph-2024-0273DOI Listing

Publication Analysis

Top Keywords

nonlinear optical
12
second-harmonic generation
8
monolayer mos
8
bound states
8
states continuum
8
optical interactions
8
mos monolayer
8
nonlinear
5
giant second-harmonic
4
monolayer
4

Similar Publications

Giant two-photon upconversion from 2D exciton in doubly-resonant plasmonic nanocavity.

Light Sci Appl

September 2025

Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, China.

Photon upconversion through high harmonic generation, multiphoton absorption, Auger recombination and phonon scattering performs a vital role in energy conversion and renormalization. Considering the reduced dielectric screening and enhanced Coulomb interactions, semiconductor monolayers provide a promising platform to explore photon upconversion at room temperature. Additionally, two-photon upconversion was recently demonstrated as an emerging technique to probe the excitonic dark states due to the extraordinary selection rule compared with conventional excitation.

View Article and Find Full Text PDF

Reconfigurable nonlinear Pancharatnam-Berry diffractive optics with photopatterned ferroelectric nematics.

Light Sci Appl

September 2025

National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, Nanjing University, 210023, Nanjing, China.

Planar optical elements incorporating space-varying Pancharatnam-Berry phase have revolutionized the manipulation of light fields by enabling continuous control over amplitude, phase, and polarization. While previous research focusing on linear functionalities using apolar liquid crystals (LCs) has attracted much attention, extending this concept to the nonlinear regime offers unprecedented opportunities for advanced optical processing. Here, we demonstrate the reconfigurable nonlinear Pancharatnam-Berry LC diffractive optics in photopatterned ion-doped ferroelectric nematics.

View Article and Find Full Text PDF

Polymorphic two-dimensional (2D) transition metal dichalcogenides (TMDCs) exhibit diverse properties for optoelectronic applications. Here, utilizing phase-engineered MoTe as a prototypical platform, we comprehensively explored its ultrafast and nonlinear optical properties to complete the fundamental framework of phase-dependent optical phenomena in 2D TMDCs. Starting with the phase-selective synthesis of 2H- and 1T'-MoTe with tailored thicknesses, we revealed their distinct photocarrier relaxation mechanisms using intensive power-/temperature-/thickness-dependent transient absorption spectra (TAS).

View Article and Find Full Text PDF

Polar protic and aprotic solvents can effectively simulate the maturation of breast carcinoma cells. Herein, the influence of polar protic solvents (water and ethanol) and aprotic solvents (acetone and DMSO) on the properties of 3-(dimethylaminomethyl)-5-nitroindole (DAMNI) was investigated using density functional theory (DFT) computations. Thermodynamic parameters retrieved from the vibrational analysis indicated that the DAMNI's entropy, heat capacity, and enthalpy increased with rising temperature.

View Article and Find Full Text PDF

Photonic Reservoir Computing (RC) systems leverage the complex propagation and nonlinear interaction of optical waves to perform information processing tasks. These systems employ a combination of optical data encoding (in the field amplitude and/or phase), random scattering, and nonlinear detection to generate nonlinear features that can be processed via a linear readout layer. In this work, we propose a novel scattering-assisted photonic reservoir encoding scheme where the input phase is deliberately wrapped multiple times beyond the natural period of the optical waves [0,2π).

View Article and Find Full Text PDF