A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A stochastic encoder using point defects in two-dimensional materials. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

While defects are undesirable for the reliability of electronic devices, particularly in scaled microelectronics, they have proven beneficial in numerous quantum and energy-harvesting applications. However, their potential for new computational paradigms, such as neuromorphic and brain-inspired computing, remains largely untapped. In this study, we harness defects in aggressively scaled field-effect transistors based on two-dimensional semiconductors to accelerate a stochastic inference engine that offers remarkable noise resilience. We use atomistic imaging, density functional theory calculations, device modeling, and low-temperature transport experiments to offer comprehensive insight into point defects in WSe FETs and their impact on random telegraph noise. We then use random telegraph noise to construct a stochastic encoder and demonstrate enhanced inference accuracy for noise-inflicted medical-MNIST images compared to a deterministic encoder, utilizing a pre-trained spiking neural network. Our investigation underscores the importance of leveraging intrinsic point defects in 2D materials as opportunities for neuromorphic computing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11618794PMC
http://dx.doi.org/10.1038/s41467-024-54283-1DOI Listing

Publication Analysis

Top Keywords

point defects
12
stochastic encoder
8
random telegraph
8
telegraph noise
8
defects
5
encoder point
4
defects two-dimensional
4
two-dimensional materials
4
materials defects
4
defects undesirable
4

Similar Publications