Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
While defects are undesirable for the reliability of electronic devices, particularly in scaled microelectronics, they have proven beneficial in numerous quantum and energy-harvesting applications. However, their potential for new computational paradigms, such as neuromorphic and brain-inspired computing, remains largely untapped. In this study, we harness defects in aggressively scaled field-effect transistors based on two-dimensional semiconductors to accelerate a stochastic inference engine that offers remarkable noise resilience. We use atomistic imaging, density functional theory calculations, device modeling, and low-temperature transport experiments to offer comprehensive insight into point defects in WSe FETs and their impact on random telegraph noise. We then use random telegraph noise to construct a stochastic encoder and demonstrate enhanced inference accuracy for noise-inflicted medical-MNIST images compared to a deterministic encoder, utilizing a pre-trained spiking neural network. Our investigation underscores the importance of leveraging intrinsic point defects in 2D materials as opportunities for neuromorphic computing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11618794 | PMC |
http://dx.doi.org/10.1038/s41467-024-54283-1 | DOI Listing |