98%
921
2 minutes
20
Many studies on the adaptability of Tibetan sheep to hypoxia have been reported, but little attention has been paid to the reproduction of Tibetan sheep living at an altitude of more than 4000 m. In this study, the ovaries of Alpine Merino sheep (AM) living in middle-high altitude areas (2500 m) and the ovaries of Gangba Tibetan sheep (GB) and Huoba Tibetan sheep (HB) living in ultra-high altitude areas (4400 m or more) were collected. Through morphological, transcriptomics and metabolomics, the effects of ultra-high altitude areas on Tibetan sheep ovarian development and the molecular mechanism of sheep's adaptability to ultra-high altitude environment were explored. The results showed that the number of granulosa cells in AM was significantly higher than that in GB and HB. The transcriptome revealed several genes related to follicular development, such as DAPL1, IGFBP1, C5, GPR12, STRA6, BMPER, etc., which were mainly enriched in related pathways such as cell growth and development. Through metabolomics analysis, it was found that the differential metabolites between the three groups of sheep were mainly lipids and lipid-like small molecules, such as Glycerol 3-Phosphate, PC (16: 0 / 18: 3 (9Z, 12Z, 15Z)), mainly enriched in lipid metabolism and other related pathways. The results of combined analysis showed that Tryptophan metabolism and Steroid hormone biosynthesis may have a significant effect on Tibetan sheep follicular development. Some genes (including HSD17B7, CYP11A1, CYP19, HSD3B1, CYP17, etc.) and some metabolites (including Cortisone, 2-Methoxyestrone, etc.) are enriched in these pathways, regulating ovarian and follicular development by affecting estrogen, progesterone, etc.. The results further revealed the molecular mechanism of Tibetan sheep to adapt to the ultra-high altitude environment and maintain normal ovarian and follicular development through the regulation of genes and metabolites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ygeno.2024.110973 | DOI Listing |
Front Genet
August 2025
College of Poultry Production and Management, TANUVAS, Hosur, India.
Background: India's indigenous sheep breeds have evolved under extreme and diverse agro-ecological pressures, yet the genomic basis of their resilience and local adaptation remains poorly understood.
Method: This study combines genomic inbreeding estimates, runs of homozygosity (ROH), population structure analyses, and composite selection scans to investigate three native Indian breeds-Changthangi, Deccani, and Garole-within a panel of nine breeds that also includes populations from Africa (Ethiopian Menz), East and South Asia (Tibetan, Chinese Merino, Bangladesh Garole, Bangladesh East), and Europe (Suffolk).
Results: ROH and heterozygosity estimates revealed strong contrasts: Bangladesh East sheep exhibited high genomic inbreeding (F≈14.
J Environ Manage
September 2025
State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China,
Grazing affects the allocation of aboveground biomass (AGB), and decomposition of litter and dung, thereby regulating material flow in grassland ecosystems. However, the combined effects of grazing system (GS) and body weight (BW) on biomass allocation remain unclear. This study had conducted a two-year experiment in an alpine meadow of Qinghai-Tibetan Plateau (QTP), in order to examine the effects of two GS (continuous grazing - CG, and rotational grazing - RG) and three BWs of Tibetan sheep (23.
View Article and Find Full Text PDFFront Vet Sci
August 2025
Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.
Altitude adaptation is a complex process involving multiple physiological and biochemical responses to hypoxia and other environmental stresses. In-depth genetic analysis of Tibetan sheep, which exhibit significant adaptations to high-altitude hypoxia, promises to elucidate hypoxia-tolerance mechanisms in plateau animals. Here, we conducted a genome-wide selection scan on three Tibetan sheep populations: low-altitude Tao (TS; 2887 m), medium-altitude Tianjun white (WT; 3331 m), and high-altitude Huoerba (HB; 4614 m).
View Article and Find Full Text PDFJ Anim Sci Biotechnol
September 2025
Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.
Background: As an indigenous livestock species on the Tibetan Plateau, Tibetan sheep exhibit remarkable adaptability to low temperatures and nutrient-scarce environments. During the cold season, Tibetan sheep are typically managed under two feeding regimes: barn feeding (BF) and traditional grazing (TG). However, the molecular mechanisms underlying their adaptation to these distinct management strategies remain unclear.
View Article and Find Full Text PDFGenes (Basel)
July 2025
College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
: Complete environmental adaptation requires both survival and reproductive success. The hypoxic Qinghai-Tibet Plateau (>3000 m) challenges reproduction in indigenous species. Tibetan sheep, a key plateau-adapted breed, possess remarkable hypoxic tolerance, yet the genetic basis of their reproductive success remains poorly understood.
View Article and Find Full Text PDF