Transcriptome and metabolome revealed the effects of hypoxic environment on ovarian development of Tibetan sheep.

Genomics

Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chines

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Many studies on the adaptability of Tibetan sheep to hypoxia have been reported, but little attention has been paid to the reproduction of Tibetan sheep living at an altitude of more than 4000 m. In this study, the ovaries of Alpine Merino sheep (AM) living in middle-high altitude areas (2500 m) and the ovaries of Gangba Tibetan sheep (GB) and Huoba Tibetan sheep (HB) living in ultra-high altitude areas (4400 m or more) were collected. Through morphological, transcriptomics and metabolomics, the effects of ultra-high altitude areas on Tibetan sheep ovarian development and the molecular mechanism of sheep's adaptability to ultra-high altitude environment were explored. The results showed that the number of granulosa cells in AM was significantly higher than that in GB and HB. The transcriptome revealed several genes related to follicular development, such as DAPL1, IGFBP1, C5, GPR12, STRA6, BMPER, etc., which were mainly enriched in related pathways such as cell growth and development. Through metabolomics analysis, it was found that the differential metabolites between the three groups of sheep were mainly lipids and lipid-like small molecules, such as Glycerol 3-Phosphate, PC (16: 0 / 18: 3 (9Z, 12Z, 15Z)), mainly enriched in lipid metabolism and other related pathways. The results of combined analysis showed that Tryptophan metabolism and Steroid hormone biosynthesis may have a significant effect on Tibetan sheep follicular development. Some genes (including HSD17B7, CYP11A1, CYP19, HSD3B1, CYP17, etc.) and some metabolites (including Cortisone, 2-Methoxyestrone, etc.) are enriched in these pathways, regulating ovarian and follicular development by affecting estrogen, progesterone, etc.. The results further revealed the molecular mechanism of Tibetan sheep to adapt to the ultra-high altitude environment and maintain normal ovarian and follicular development through the regulation of genes and metabolites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygeno.2024.110973DOI Listing

Publication Analysis

Top Keywords

tibetan sheep
32
ultra-high altitude
16
follicular development
16
sheep living
12
altitude areas
12
sheep
10
ovarian development
8
tibetan
8
molecular mechanism
8
altitude environment
8

Similar Publications

Background: India's indigenous sheep breeds have evolved under extreme and diverse agro-ecological pressures, yet the genomic basis of their resilience and local adaptation remains poorly understood.

Method: This study combines genomic inbreeding estimates, runs of homozygosity (ROH), population structure analyses, and composite selection scans to investigate three native Indian breeds-Changthangi, Deccani, and Garole-within a panel of nine breeds that also includes populations from Africa (Ethiopian Menz), East and South Asia (Tibetan, Chinese Merino, Bangladesh Garole, Bangladesh East), and Europe (Suffolk).

Results: ROH and heterozygosity estimates revealed strong contrasts: Bangladesh East sheep exhibited high genomic inbreeding (F≈14.

View Article and Find Full Text PDF

Grazing system and body weight of Tibetan sheep influence biomass allocation and decomposition in alpine meadows.

J Environ Manage

September 2025

State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China,

Grazing affects the allocation of aboveground biomass (AGB), and decomposition of litter and dung, thereby regulating material flow in grassland ecosystems. However, the combined effects of grazing system (GS) and body weight (BW) on biomass allocation remain unclear. This study had conducted a two-year experiment in an alpine meadow of Qinghai-Tibetan Plateau (QTP), in order to examine the effects of two GS (continuous grazing - CG, and rotational grazing - RG) and three BWs of Tibetan sheep (23.

View Article and Find Full Text PDF

Genome-wide selection signal analysis reveals the adaptability of Tibetan sheep to high altitudes.

Front Vet Sci

August 2025

Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.

Altitude adaptation is a complex process involving multiple physiological and biochemical responses to hypoxia and other environmental stresses. In-depth genetic analysis of Tibetan sheep, which exhibit significant adaptations to high-altitude hypoxia, promises to elucidate hypoxia-tolerance mechanisms in plateau animals. Here, we conducted a genome-wide selection scan on three Tibetan sheep populations: low-altitude Tao (TS; 2887 m), medium-altitude Tianjun white (WT; 3331 m), and high-altitude Huoerba (HB; 4614 m).

View Article and Find Full Text PDF

Background: As an indigenous livestock species on the Tibetan Plateau, Tibetan sheep exhibit remarkable adaptability to low temperatures and nutrient-scarce environments. During the cold season, Tibetan sheep are typically managed under two feeding regimes: barn feeding (BF) and traditional grazing (TG). However, the molecular mechanisms underlying their adaptation to these distinct management strategies remain unclear.

View Article and Find Full Text PDF

: Complete environmental adaptation requires both survival and reproductive success. The hypoxic Qinghai-Tibet Plateau (>3000 m) challenges reproduction in indigenous species. Tibetan sheep, a key plateau-adapted breed, possess remarkable hypoxic tolerance, yet the genetic basis of their reproductive success remains poorly understood.

View Article and Find Full Text PDF