Comediation of voltage gating and ion charge in MXene membrane for controllable and selective monovalent cation separation.

Sci Adv

Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Artificial ion channels with controllable mono/monovalent cation separation fulfill important roles in biomedicine, ion separation, and energy conversion. However, it remains a daunting challenge to develop an artificial ion channel similar to biological ion channels due to ion-ion competitive transport and lack of ion-gating ability of channels. Here, we report a conductive MXene membrane with polydopamine-confined angstrom-scale channels and propose a voltage gating and ion charge comediation strategy to concurrently achieve gated and selective mono/monovalent cation separation. The membrane shows a highly switchable "on-off" ratio of ∼9.9 for K transport and an excellent K/Li selectivity of 40.9, outperforming the ion selectivity of reported membranes with electrical gating (typically 1.5 to 6). Theoretical simulations reveal that the introduced high-charge cations such as Mg enable the preferential distribution of target K over competing Li at the channel entrance, and the surface potential reduces the ionic transport energy barrier for allowing K to pass quickly through the channel.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11616687PMC
http://dx.doi.org/10.1126/sciadv.ado3998DOI Listing

Publication Analysis

Top Keywords

cation separation
12
voltage gating
8
gating ion
8
ion charge
8
mxene membrane
8
artificial ion
8
ion channels
8
mono/monovalent cation
8
ion
7
comediation voltage
4

Similar Publications

Resonant three-photon ionization spectroscopy has been used to study the late 4d and 5d transition metal carbides RuC, RhC, OsC, IrC, and PtC. These species, like most diatomic transition metals with open nd subshells, exhibit an exceptionally high density of states near the ground separated atom limit. Spin-orbit and nonadiabatic interactions provide a means for the molecules to rapidly dissociate as soon as the bond dissociation energy (BDE) is exceeded.

View Article and Find Full Text PDF

Background: Synergy between antibiotic pairs is typically discovered using chequerboard assays that assume uniform, static drug exposure; however, such conditions rarely apply in vivo. Dynamic and heterogeneous tissue environments create spatial and temporal mismatches in drug exposure that can uncouple synergistic interactions, leading to unexpected treatment failure.

Objective: This study aims to develop a physiologically relevant in vitro model that integrates infection-site microenvironments and drug-specific pharmacokinetics.

View Article and Find Full Text PDF

Bis(l-leucinium) hexa-chlorido-stannate(IV) dihydrate.

IUCrdata

August 2025

Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes), 35042 Rennes France.

The title compound, (CHNO)[SnCl]·2HO, features l-leucinium cations adopting extended conformations, which maximizes the separation between the methyl groups [-CH(CH)] and the polar NH and COOH moieties. Additionally, an intra-molecular hydrogen bond between the ammonium (NH ) group and the carboxyl group induces a slight reduction in the C-C-N bond angles, with an average value of 106.5°, compared to the ideal tetra-hedral angle of 109.

View Article and Find Full Text PDF

Recyclable Cu-Catalyzed -Methylation and C5-Methylthiomethylation of Isatins with DMSO.

J Org Chem

September 2025

Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.

An unprecedented recyclable system of copper-catalyzed C-C/N coupling of isatins and DMSO without any oxidant and acidic/basic additive has been unlocked. The -isatins occur tandem -methylation and C5-methylthiomethylation in order, while -substituted isatins proceed C5-methylthiomethylation only. DMSO serves as Me and MeSCH sources as well as the solvent.

View Article and Find Full Text PDF

Biological cells use cations as signaling messengers to regulate a variety of responses. Linking cations to the functionality of synthetic membranes is thus crucial to engineering advanced biomimetic agents such as synthetic cells. Here, we introduce bioinspired DNA-based receptors that exploit noncanonical G-quadruplexes for cation-actuated structural and functional responses in synthetic lipid membranes.

View Article and Find Full Text PDF