98%
921
2 minutes
20
Soil biological characteristics are highly sensitive to land use changes, making them valuable indicators of soil quality. This study assesses the effects of three land use types (agriculture, rangeland, and forest) and elevation variations on soil microbial parameters and their spatial distribution in the Khaneghah region. Standard physicochemical and biological properties of the soil were measured on a total of 72 soil samples collected using systematic and random sampling techniques. Spatial distribution maps of the biological indices were generated using geostatistical techniques, specifically the Kriging method, within a geographic information system (GIS). The results revealed significantly higher values for microbial biomass carbon (MBC = 900 mg C-CO kg), nitrogen (MBN = 8.97 mg N kg), basal respiration (BR = 25.1 mg C-CO g day), and the total microbial population (MPN = 0.63 × 10 cells g) in forest soils compared to rangeland and agricultural soils. The alignment between land use maps and biological index maps reinforced these findings. Although the correlations between biological indices and physicochemical properties were generally weak (positive or negative), organic matter content, field capacity moisture, and silt percentage exhibited a slight positive correlation with most of the microbial indices evaluated. The comparison of soil microbial indices with the digital elevation model map indicated higher levels of MBC, MBN, BR, and MPN at elevated regions. However, the microbial quotient and metabolic quotient (qCO₂) did not show significant changes with increasing elevation. The study also confirmed the effectiveness of Kriging interpolation in mapping specific soil microbial indices, as the correlation between Kriging estimates and measured values at sampling points exceeded 0.2, demonstrating statistical significance at a 5% confidence level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-024-13358-8 | DOI Listing |
J Agric Food Chem
September 2025
State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
Silica nanoparticles (SiONPs), as emerging foliar nanofertilizers, demonstrate promising potential in agriculture. However, whether foliar application of SiONPs alters belowground soil metabolites and microbe composition and abundance remains largely unknown. In this study, 3-week-old cucumber plants were foliar-sprayed with fumed or Stöber SiO NPs dosing at -4 mg of NPs per plant for 5 days.
View Article and Find Full Text PDFMol Ecol
September 2025
State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Shaanxi, People's Republic of China.
Increasing evidence indicates that the loss of soil microbial α-diversity triggered by environmental stress negatively impacts microbial functions; however, the effects of microbial α-diversity on community functions under environmental stress are poorly understood. Here, we investigated the changes in bacterial and fungal α- diversity along gradients of five natural stressors (temperature, precipitation, plant diversity, soil organic C and pH) across 45 grasslands in China and evaluated their connection with microbial functional traits. By quantifying the five environmental stresses into an integrated stress index, we found that the bacterial and fungal α-diversity declined under high environmental stress across three soil layers (0-20 cm, 20-40 cm and 40-60 cm).
View Article and Find Full Text PDFGlob Chang Biol
September 2025
Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands.
Droughts are increasing with climate change, affecting the functioning of terrestrial ecosystems and limiting their capacity to mitigate rising atmospheric CO levels. However, there is still large uncertainty on the long-term impacts of drought on ecosystem carbon (C) cycling, and how this determines the effect of subsequent droughts. Here, we aimed to quantify how drought legacy affects the response of a heathland ecosystem to a subsequent drought for two life stages of Calluna vulgaris resulting from different mowing regimes.
View Article and Find Full Text PDFiScience
September 2025
Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
Arbuscular mycorrhizal fungi (AMF) play a crucial role in disease control by establishing symbiotic relationships with plant roots. AMF improve salinity tolerance in plants by regulating the Na/K ratio through selective ion transport and mediate osmotic regulation by inducing the accumulation of osmotic-compatible solutes such as glycine betaine and proline to enable plant cells to maintain water content and the metabolic balance. AMF can also activate antioxidant defense responses by stimulating enzymes that protect plant cells from harmful oxidation and pathological infections.
View Article and Find Full Text PDFBeilstein J Nanotechnol
August 2025
Faculty of Engineering and Technology, Saigon University, 273 An Duong Vuong Street, Cho Quan Ward, Ho Chi Minh City 700000, Vietnam.
This study employs a bibliometric analysis using CiteSpace to explore research trends on the impact of biochar on microplastics (MPs) in soil and water environments. In agricultural soils, MPs reduce crop yield, alter soil properties, and disrupt microbial diversity and nutrient cycling. Biochar, a stable and eco-friendly material, has demonstrated effectiveness in mitigating these effects by restoring soil chemistry, enhancing microbial diversity and improving crop productivity.
View Article and Find Full Text PDF