Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this study, 5-(2-bromoaryl)tetrazoles were reacted with 1,3-diketones in DMF in the presence of a catalytic amount of magnetic Cu-MOF-74 (FeO@SiO@Cu-MOF-74) and a base under microwave irradiation to yield the corresponding 1-aminoisoquinolines. The FeO@SiO@Cu-MOF-74 catalyst could be easily recovered from the reaction mixture and reused four times without any significant loss of catalytic activity. An initial copper-catalyzed C(sp)-C(sp) bond formation accompanied by -Claisen deacylative cyclocondensation (for acyclic 1,3-diketones) and direct cyclocondensation (for cyclohexane-1,3-diones) is proposed as a key reaction pathway for this process. Cyclohexanone-fused 1-aminoisoquinolines produced from the reaction between 5-(2-bromoaryl)tetrazoles and cyclohexane-1,3-diones could be aromatized into 6-aminophenanthridines via a one-pot sequential process involving reduction, dehydration, and oxidation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.4c02496DOI Listing

Publication Analysis

Top Keywords

microwave irradiation
8
recyclable magnetic
4
magnetic mof-catalyzed
4
mof-catalyzed synthesis
4
synthesis 1-aminoisoquinolines
4
1-aminoisoquinolines 6-aminophenanthridines
4
6-aminophenanthridines 5-2-bromoaryltetrazoles
4
5-2-bromoaryltetrazoles 13-diketones
4
13-diketones microwave
4
irradiation study
4

Similar Publications

CsCO-Catalyzed Decarboxylation/Cyclization to Access Functionalized 8-Hydroxyisoquinoline-1(2)-ones and 2-Pyridones Assisted by Microwave Irradiation.

J Org Chem

September 2025

National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China.

We herein describe a novel decarboxylation/cyclization sequence involving a three-component reaction of dialkyl 2-(alkoxymethylene)malonate, amines, and terminal alkyne ester or internal alkyne ester catalyzed by CsCO under microwave conditions. These two types of highly chemo- and regioselective transformations were accomplished by different reaction channels to furnish a wide range of functionalized 8-hydroxyisoquinoline-1(2)-ones (21 examples) and 2-pyridones (18 examples) in good to excellent yields and might provide new opportunities for the discovery of N-heterocyclic drugs and other functional molecules.

View Article and Find Full Text PDF

Objective: Drug resistance in poses a significant challenge, prompting the need for alternative treatments. This research aimed to explore the combined treatment of chemical or phytomedicines and microwaves radiation.

Methods: The strain was cultivated on non-nutrient agar.

View Article and Find Full Text PDF

This study introduces microwave-assisted, Fe(III)-catalyzed ring-opening annulations of isoxazoles, enabling the rapid and selective synthesis of 1,4-diacyl pyrroles and substituted pyridines. By leveraging microwave irradiation and transition metal catalysis, this approach enhances the reaction efficiency, reduces reaction times, and promotes high regioselectivity under mild conditions. Under thermal conditions, the Ru(II) catalyst led to the synthesis of nicotinamide derivatives.

View Article and Find Full Text PDF

This study investigates the extraction, optimization, and characterization of pectin from pistachio industry waste (PIW) using microwave-assisted subcritical water extraction (MASWE) without acid. Two different low-methoxyl pectins (LMP) were observed. The first pectin variant (MASWE100) was extracted at a pressure of 3 MPa, a temperature of 100 °C, and an irradiation time of 4 min.

View Article and Find Full Text PDF

Implant-related infections (IRIs) pose a major challenge in orthopedic applications due to the persistence of biofilms, which are highly resistant to conventional antibiotics. This study introduces oxygen vacancy-engineered Zn-Fe spinel nanoparticles as microwave-responsive antibacterial agents. The oxygen vacancies in the spinel structure enhance reactive oxygen species (ROS) generation under microwave irradiation, providing a dual-mode antibacterial mechanism of thermal and oxidative stress.

View Article and Find Full Text PDF