Sculpting new visual categories into the human brain.

Proc Natl Acad Sci U S A

Princeton Neuroscience Institute & Department of Psychology, Princeton University, Princeton, NJ 08544.

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Learning requires changing the brain. This typically occurs through experience, study, or instruction. We report an alternate route for humans to acquire visual knowledge, through the direct sculpting of activity patterns in the human brain that mirror those expected to arise through learning. We used neurofeedback from closed-loop real-time functional MRI to create new categories of visual objects in the brain, without the participants' explicit awareness. After neural sculpting, participants exhibited behavioral and neural biases for the learned, but not for the control categories. The ability to sculpt new perceptual distinctions into the human brain offers a noninvasive research paradigm for causal testing of the link between neural representations and behavior. As such, beyond its current application to perception, our work potentially has broad relevance for advancing understanding in other domains of cognition such as decision-making, memory, and motor control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648923PMC
http://dx.doi.org/10.1073/pnas.2410445121DOI Listing

Publication Analysis

Top Keywords

human brain
12
brain
5
sculpting visual
4
visual categories
4
categories human
4
brain learning
4
learning requires
4
requires changing
4
changing brain
4
brain typically
4

Similar Publications

Mimicking human brain functionalities with neuromorphic devices represents a pivotal breakthrough in developing bioinspired electronic systems. The human somatosensory system provides critical environmental information and facilitates responses to harmful stimuli, endowing us with good adaptive capabilities. However, current sensing technologies often struggle with insufficient sensitivity, dynamic response, and integration challenges.

View Article and Find Full Text PDF

The lateral prefrontal cortex (LPFC) serves as a critical hub for higher-order cognitive and executive functions in the human brain, coordinating brain networks whose disruption has been implicated in many neurological and psychiatric disorders. While transcranial brain stimulation treatments often target the LPFC, our current understanding of connectivity profiles guiding these interventions based on electrophysiology remains limited. Here, we present a high-resolution probabilistic map of bidirectional effective connectivity between the LPFC and widespread cortical and subcortical regions.

View Article and Find Full Text PDF

EFMouse: A toolbox to model stimulation-induced electric fields in the mouse brain.

PLoS Comput Biol

September 2025

Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, United States of America.

Research into the mechanisms underlying neuromodulation by tES using in-vivo animal models is key to overcoming experimental limitations in humans and essential to building a detailed understanding of the in-vivo consequences of tES. Insights from such animal models are needed to develop targeted and effective therapeutic applications of non-invasive brain stimulation in humans. The sheer difference in scale and geometry between animal models and the human brain contributes to the complexity of designing and interpreting animal studies.

View Article and Find Full Text PDF

Obstructive sleep apnea (OSA), one of the most common sleep disorders globally, is closely linked to brain function. Resting-state electroencephalography (EEG), due to its convenience, cost-effectiveness, and high temporal resolution, serves as a valuable tool for exploring the human brain function. This study utilized a large cohort with 968 participants who joined in 15-minute daytime resting-state EEG acquisition and overnight polysomnography (PSG) monitoring.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is a neuromuscular disease caused by low levels of SMN protein. Several therapeutic approaches boosting SMN are approved for human patients, delivering remarkable improvements in lifespan and symptoms. However, emerging phenotypes, including neurodevelopmental comorbidities, are being reported in some treated SMA patients, indicative of alterations in brain development.

View Article and Find Full Text PDF