98%
921
2 minutes
20
Optical information encryption technology has garnered significant attention in currency security, information protection, and personal identification. While optical metasurfaces are considered ideal platforms for information encryption, their high cost and time-intensive fabrication processes have limited their widespread applications. To address this, emergent chiroptical nanomaterials offer new opportunities for information encryption through their polarization capabilities. In this study, composite films consisting of chiral Au nanocrystals embedded in curable polymers are utilized as a patternable platform for information encryption. Theoretical simulations demonstrate that chiral Au nanocrystals can rotate linearly polarized light of different wavelengths in various directions. Notably, Au nanocrystals with opposite chirality show reversed optical rotation effects for linearly polarized light while exhibiting the same extinction properties for non-polarized light. Based on these investigations, patternable composite films with embedded chiral Au nanocrystals are fabricated, showcasing their potential to encode information optical rotation. This work establishes the feasibility of chiral Au nanocrystals as a patternable platform for information encryption and presents a simple, convenient, and cost-effective approach for optical information security.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4nr04338c | DOI Listing |
Anal Chem
September 2025
Institute of Digitized Medicine and Intelligent Technology, Wenzhou Medical University, Wenzhou 325000, P. R. China.
Surface-enhanced Raman spectroscopy (SERS) has shown potential for early disease diagnosis via urinary metabolomics, but still faces challenges in achieving stable hot spots and processing complex clinical data. In this study, the preparation of chiral gold nanostars with precisely controllable branch size, number, and sharpness was realized by investigating the effects of l-GSH and CTA ( indicates halides) on site occupancy, reduction rate, and selective adsorption on crystal facets. Raman spectroscopic characterization using rhodamine 6G (R6G) as a reporter molecule revealed that nanoparticles with fewer branches, larger branch bases, and smoother surfaces exhibited excellent SERS activity, with an analytical enhancement factor (AEF) of 5.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium. Electronic address:
Cellulose nanocrystals (CNCs) have emerged as promising candidates for chiroptical functional materials due to their ability to form cholesteric liquid crystals with tunable periodicity. The quality of the final cholesteric phase is influenced by the nucleation, growth and coalescence mechanism of the initial droplets, known as tactoids. Current research focuses on understanding the size and morphological transformations of these tactoids, to gain deeper insights into their dynamic behavior and, in turn, to better control the final properties of novel photonic materials.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Department of Food Science and Agricultural Chemistry, McGill University, Quebec H9X 3V9, Canada.
Passive daytime radiative cooling (PDRC) offers a sustainable solution to global energy challenges by dissipating heat without energy input. However, conventional PDRC materials face trade-offs between biodegradability, color integration, optical transparency, and mechanical robustness. Herein, a biomimetic, structurally colored PDRC film fabricated via evaporation-induced self-assembly of cellulose nanocrystals (CNCs), betaine, and polyvinyl alcohol was developed.
View Article and Find Full Text PDFScience
September 2025
Institute of Engineering Research, Korea University, Seoul, Republic of Korea.
Chiral crystals with well-defined handedness in atomic arrangements exhibit properties such as spin selectivity, asymmetric magnetoresistance, and skyrmions. Although similar geometry-induced phenomena in chiral organic molecule-based systems were observed, synthesizing uniform inorganic nanostructures with desired chirality using a scalable method remains challenging. We electrochemically synthesized chiral ferromagnetic cobalt-iron nanohelices from nanoparticles in anodized aluminum oxide templates.
View Article and Find Full Text PDFAdv Mater
September 2025
Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China.
Halide perovskite nanomaterials have emerged as a transformative platform for generating and manipulating polarized luminescence, offering unprecedented opportunities for next-generation optoelectronic technologies. This review comprehensively examines recent advances in engineering both linearly polarized luminescence (LPL) and circularly polarized luminescence (CPL) from perovskite nanostructures, focusing on structural design principles, chirality transfer mechanisms, and performance optimization strategies. Methods are systematically analyzed to achieve polarized emission, including anisotropic nanocrystal growth, chiral ligand functionalization, and liquid crystal-mediated alignment, while highlighting critical optical factors such as dissymmetry factors and photoluminescence quantum yield.
View Article and Find Full Text PDF