Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Silk fibroin (SF), a pivotal biomaterial, holds immense promise for diverse applications within the realm of bone tissue engineering. SF is an ideal scaffold material with exceptional biocompatibility, mechanical robustness, biodegradability, and bioactivity. A plethora of investigations have corroborated SF's efficacy in supporting bone tissue repair and regeneration. This comprehensive review delves into the structural attributes, physicochemical characteristics, and extraction methodologies of SF. Moreover, it elucidates the strides taken in harnessing SF across a spectrum of forms, including films, hydrogels, scaffolds, electrospun fibers, and composites for bone tissue engineering applications. Moreover, the application bottleneck of SF as a bone repair material is highlighted, and its development prospects and potential biomedical applications are also presented in this review. We expect that this review can inspire the broad interest of a wide range of readers working in the fields of materials science, tissue engineering, biomaterials, bioengineering, and biomedicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4bm00950a | DOI Listing |