Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The Apollo 17 73001/73002 double drive tube, collected at the base of the South Massif in the Taurus-Littrow Valley, was opened in 2019 as part of the Apollo Next Generation Sample Analysis program (ANGSA). A series of continuous thin sections were prepared capturing the full length of the upper portion of the double drive tube (73002). The aim of this study was to use Quantitative Evaluation of Minerals by SCANing electron microscopy (QEMSCAN), to search for clasts of non-lunar meteoritic origin and to analyze the mineralogy and textures within the core. By highlighting mineral groups associated with meteoritic origins, we identified 232 clasts of interest. The elemental composition of 33 clasts was analyzed using electron microprobe analysis that revealed that all clasts were of lunar origin, suggesting that any meteoritic component in the regolith material we studied is not present in the form of lithic clasts. In the process of searching for meteorite fragments, we also identified a number of clast types including a group with highly magnesian olivine compositions (Fo). We extracted raw pixel data to investigate changes in mineralogy with depth, used QEMSCAN processors to separate and group individual clasts based on mineralogy, and determined variations in particle size with depth. Our results show a decreasing abundance of glass and agglutinate clasts with depth, associated with a higher soil maturity in the upper portion of the core. The lack of stratigraphy and dominance of non-mare clasts is consistent with the landslide origin of the material from the South Massif.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11608088PMC
http://dx.doi.org/10.1029/2024JE008359DOI Listing

Publication Analysis

Top Keywords

thin sections
8
double drive
8
drive tube
8
south massif
8
upper portion
8
clasts
8
automated mineralogy
4
mineralogy analysis
4
analysis apollo
4
apollo 73002
4

Similar Publications

Laser processing in liquids: insights into nanocolloid generation and thin film integration for energy, photonic, and sensing applications.

Beilstein J Nanotechnol

August 2025

Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León. San Nicolás de los Garza, Nuevo León, 66455, México.

Nanoparticles in their pure colloidal form synthesized by laser-assisted processes such as laser ablation/fragmentation/irradiation/melting in liquids have attained much interest from the scientific community because of their specialties like facile synthesis, ultra-high purity, biocompatibility, colloidal stability in addition to other benefits like tunable size and morphology, crystalline phases, new compounds and alloys, and defect engineering. These nanocolloids are useful for fabricating different devices mainly with applications in optoelectronics, catalysis, sensors, photodetectors, surface-enhanced Raman spectroscopy (SERS) substrates, and solar cells. In this review article, we describe different methods of nanocolloidal synthesis using laser-assisted processes and corresponding thin film fabrication methods, particularly those utilized for device fabrication and characterization.

View Article and Find Full Text PDF

Exploring the Role of β-1,3-Glucanase in Aerenchyma Development in Sugarcane Roots.

Ann Bot

September 2025

Laboratório de Fisiologia Ecológica de Plantas, Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Brasil.

Background And Aims: Aerenchyma formation has emerged as a promising model for understanding cell wall modifications. Certain cells undergo programmed cell death (PCD), while others do not, suggesting the existence of a tightly regulated signaling dispersion mechanism. Cell-to-cell communication occurs via plasmodesmata, whose permeability is regulated by the deposition of callose (β-1,3-glucan) and its degradation by β-1,3-glucanase.

View Article and Find Full Text PDF

The Ordos Basin's Hangjinqi Shiligahan west zone Xiashihezi Formation 1 Member gas reservoir exhibits significant exploration and development potential. However, its sedimentation and reservoir characteristics are poorly understood. To address this, geological, seismic, macroscopic, and microscopic methods are combined.

View Article and Find Full Text PDF

Introduction: Charcot neuroarthropathy (CNO) of foot characterised by an increased bone turnover denoted by serological markers of bone resorption. However, histological characteristics of foot bones in people with CNO are not well elucidated.

Methods: The foot bone samples were collected from patients who had either surgical reconstruction or below-knee amputations for chronic CNO foot ( = 10, Group A), unsalvageable diabetic foot ulcer ( = 16, Group B), and non-diabetic healthy controls following road traffic accident ( = 16, group C).

View Article and Find Full Text PDF

Extreme ultraviolet (EUV) lithography has revolutionized the high-volume manufacturing of nanoscale components. The use of EUV light leads to ionization-driven chemistry in the imaging materials of lithography, the photoresists. The complex interplay of ionization, generation of primary/secondary electrons, and the subsequent chemical mechanisms that lead to image formation in photoresists has been notoriously difficult to study.

View Article and Find Full Text PDF