Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Glioblastoma (GBM) is a highly aggressive brain tumor with poor prognosis and high recurrence rates. The complex immune microenvironment of GBM is highly infiltrated by tumor-associated microglia and macrophages (TAM). TAMs are known to be heterogeneous in their functional and metabolic states and can transmit either protumoral or antitumoral signals to glioma cells. Here, we performed bulk RNA sequencing and single-cell RNA sequencing on samples from patients with GBM, which revealed increased ATP synthase expression and oxidative phosphorylation activity in TAMs located in the tumor core relative to the tumor periphery. Both in vitro and in vivo models displayed similar trends of augmented TAM mitochondrial activity, along with elevated mitochondrial fission, glucose uptake, mitochondrial membrane potential, and extracellular ATP (eATP) production by TAMs in the presence of GBM cells. Tumor-secreted factors, including GM-CSF, induced the increase in TAM eATP production. Elevated eATP in the GBM microenvironment promoted glioma growth and invasion by activating the P2X purinoceptor 7 (P2X7R) on glioma cells. Inhibition of the eATP-P2X7R axis attenuated tumor cell viability in vitro and reduced tumor size and prolonged survival in glioma-bearing mouse models. Overall, this study revealed elevated TAM-derived eATP in GBM and provided the basis for targeting the eATP-P2X7R signaling axis as a therapeutic strategy in GBM. Significance: Glioblastoma-mediated metabolic reprogramming in tumor-associated microglia increases ATP secretion that supports cancer cell proliferation and invasion by activating P2X7R, which can be inhibited to attenuate tumor growth.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-24-0018DOI Listing

Publication Analysis

Top Keywords

tumor-associated microglia
12
extracellular atp
8
gbm highly
8
glioma cells
8
rna sequencing
8
eatp production
8
eatp gbm
8
invasion activating
8
gbm
7
tumor
6

Similar Publications

Hypoxia is a key histopathological feature of glioblastoma, associated with tumor aggressiveness and therapy resistance. Glioma-associated microglia and macrophages (GAMs) are key players in the tumor microenvironment of glioblastoma and acquire immunosuppressive properties during tumor progression. We show that hypoxia alters key GAM identity genes, as it upregulates the expression of monocytic marker lectin galactoside-binding doluble 3 (Lgals3) and downregulates the homeostatic microglial markers purinergic receptor P2Y G-protein coupled 12 (P2ry12) and transmembrane protein 119 (Tmem119) in GAMs co-cultured with glioma cells and in glioblastoma patients' samples.

View Article and Find Full Text PDF

Microglial Membrane-Coated Biomimetic Nanoplatform for Enhanced Blood-Brain Barrier Penetration and Targeted Photodynamic Therapy in Orthotopic Glioblastoma.

Adv Healthc Mater

September 2025

Brain Center, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, China.

Glioblastoma multiforme (GBM) continues to pose a significant challenge in the field of neuro-oncology primarily because of the limited penetration of therapeutics across the blood-brain barrier (BBB) and the presence of immunosuppressive tumor microenvironments. To address these challenges, a HD-PEG@BM biomimetic nanoplatform (hereinafter referred to as HD-P@BM) is developed that cloaks the near-infrared II photosensitizer HD-PEG (HD-P) inside microglial membranes to enable enhanced BBB penetration and tumor-targeted delivery. In this study, it is found that the microglia-derived membranes enhanced the uptake of nanoparticles by both the glioma cells and tumor-associated microglia.

View Article and Find Full Text PDF

Glioblastoma (GBM) is an aggressive brain tumor characterized by an immunosuppressive tumor microenvironment (TME), which contributes to treatment resistance and disease progression. : Tumor-associated macrophages (TAMs), comprising both resident microglia and bone marrow-derived macrophages, play a central role in supporting tumor growth, angiogenesis, and immune evasion. Most TAMs adopt an M2-like immunosuppressive phenotype, making them a promising target for immunomodulatory strategies in GBM.

View Article and Find Full Text PDF

Mathematical model of tumor-macrophage dynamics in glioma to advance myeloid-targeted therapies.

Comput Biol Med

September 2025

Mathematical Oncology Laboratory (MOLAB), Department of Mathematics, University of Castilla-La Mancha, Spain; Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain. Electronic address:

Recent biological research has highlighted the relevance of myeloid-cell populations in glioma growth, with a particular role played by tumor-associated macrophages (TAMs), which comprise resident microglia and monocyte-derived macrophages. Additionally, radiation therapy, the most common treatment for gliomas, significantly alters the tumor microenvironment, affecting TAMs and contributing to tumor recurrence. Promising preclinical studies have identified and developed drugs targeting TAMs.

View Article and Find Full Text PDF

Glioblastoma (GBM) tumors remain a challenge for immunotherapy owing to their heterogeneous and immunologically cold properties. GBM cells change the composition of the neural extracellular matrix (ECM), affecting the mobility, survival, and function of immune cells such as tumor-associated microglia and infiltrated macrophages (TAMs). The ECM protein EFEMP1/fibulin-3 is a pericellular component uniquely upregulated in GBM compared to normal brain, which promotes tumor growth and invasion.

View Article and Find Full Text PDF