Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Digital twins represent a key technology for precision health. Medical digital twins consist of computational models that represent the health state of individual patients over time, enabling optimal therapeutics and forecasting patient prognosis. Many health conditions involve the immune system, so it is crucial to include its key features when designing medical digital twins. The immune response is complex and varies across diseases and patients, and its modelling requires the collective expertise of the clinical, immunology, and computational modelling communities. This review outlines the initial progress on immune digital twins and the various initiatives to facilitate communication between interdisciplinary communities. We also outline the crucial aspects of an immune digital twin design and the prerequisites for its implementation in the clinic. We propose some initial use cases that could serve as "proof of concept" regarding the utility of immune digital technology, focusing on diseases with a very different immune response across spatial and temporal scales (minutes, days, months, years). Lastly, we discuss the use of digital twins in drug discovery and point out emerging challenges that the scientific community needs to collectively overcome to make immune digital twins a reality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11608242PMC
http://dx.doi.org/10.1038/s41540-024-00450-5DOI Listing

Publication Analysis

Top Keywords

digital twins
28
immune digital
20
immune
8
digital
8
medical digital
8
immune response
8
twins
7
twins complex
4
complex human
4
human pathologies
4

Similar Publications

Computational modeling and simulation in oncology.

Clin Transl Med

September 2025

Department of Computer Science and Biomedical Engineering, Institute of Health Care Engineering with European Testing Center of Medical Devices, Graz University of Technology, Graz, Austria.

Computational modeling and simulation are playing an increasingly important role in oncology, bridging biological research, data science and clinical practice to better understand cancer complexity and inform therapeutic development. This special issue presents recent advances in multiscale modeling, artificial intelligence-driven systems, digital twins, and in silico trials, illustrating the evolving potential of computational tools to support innovation from bench to bedside. Together, these contributions outline a future in which precision medicine, adaptive therapies and personalized diagnostics are guided by integrative and predictive modeling approaches.

View Article and Find Full Text PDF

Remote training of a reservoir computer via digital twins.

Chaos

September 2025

Department of Information Physics and Computing, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

The increasing energy consumption required for information processing has become a significant challenge, leading to growing interest in optical and optoelectronic reservoir computing as a more efficient alternative. Trained reservoir computers are especially suited for low-energy applications near the edge. However, the computational cost of training the reservoir output weights, particularly due to matrix operations, adds potentially unwanted complexity to the architecture.

View Article and Find Full Text PDF

Background: Photon-counting computed tomography (CT) bears promise to substantially improve spectral and spatial resolution. One reason for the relatively slow evolution of photon-counting detectors in CT-the technology has been used in nuclear medicine and planar radiology for decades-is pulse pileup, that is, the random staggering of pulses, resulting in count loss and spectral distortion, which in turn cause image bias and reduced contrast-to-noise ratio (CNR). The deterministic effects of pileup can be mitigated with a pileup-correction algorithm, but the loss of CNR cannot be recovered, and must be minimized by hardware design.

View Article and Find Full Text PDF